CALIPH

Preliminary Geotechnical Investigation Report

75 Mary Street, St Peters, NSW

Report No. E22317 GA_Rev3 18 September 2015

Report Distribution

Preliminary Geotechnical Investigation Report

75 Mary Street, St Peters, NSW

El Report No. E22317 GA_Rev3

Date: 18 September 2015

Copies	Recipient
1 Soft Copy (PDF – Secured, issued by email)	Caliph c/o Tamara Frangelli Tonkin Zulaikha Greer Architects Pty Ltd 117 Reservoir Street <u>SURRY HILLS NSW 2010</u>
1 Original (Saved to Digital Archives)	Environmental Investigations Australia Suite 6.01, 55 Miller Street PYRMONT NSW 2009

Author:

Technical Reviewer:

Alfrosse

Monne

Rachael Prosser

Engineering Geologist

Alan Morrow Senior Geotechnical Engineer

Revision	Details	Date	Amended By
А	Draft	20 October 2014	-
0	Final	9 December 2014	MG
1	Basement levels 3&4 deleted	25 March 2015	RP
2	Revision in response to amendment of development drawings	4 September 2015	SK
3	Revision in response to amendment of development drawings	18 September 2015	SK

© Environmental Investigations Australia Pty Ltd 2015 T/A Environmental Investigations (EI)

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

Environmental Investigations Australia Contamination | Remediation | Geotechnical

Page | i

CONTENTS

1	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	PROPOSED DEVELOPMENT	1
1.3	INVESTIGATION OBJECTIVES	1
1.4	SCOPE OF WORKS	2
1.5	INVESTIGATION CONSTRAINTS	2
2	SITE DESCRIPTION	3
2.1	SITE DESCRIPTION AND IDENTIFICATION	3
2.2	LOCAL LAND USE	3
2.3	REGIONAL SETTING	4
3	INVESTIGATION RESULTS	5
3.1	STRATIGRAPHY	5
3.2	GROUNDWATER	6
3.3	LABORATORY TEST RESULTS	6
4	GEOTECHNICAL DISCUSSIONS AND PRELIMINARY DESIGN ADVICE	8
4.1	Excavation Retention	11
4.2	BASEMENT EXCAVATION MONITORING	11
4.3	FOUNDATIONS	12
4.4	CONSTRUCTION CONSIDERATIONS FOR THE ASHFIELD SHALE FORMATION	12
5	CONCLUSIONS	13
6	RECOMMENDATIONS FOR FURTHER GEOTECHNICAL SERVICES	14
7	STATEMENT OF LIMITATIONS	15
8	REFERENCES	16
9	ABBREVIATIONS	16

TABLES

Table 2-1	Summary of Site Information	3
Table 2-2	Summary of Local Land Use	3
Table 2-3	Topographic, Geological and Hydrogeological Information	4
Table 2-4	Summary of NRA Atlas registered Groundwater Bores	4
Table 3-1	Summary of Inferred Subsurface Conditions	5
Table 3-2	Summary of Groundwater Conditions	6
Table 3-3	Summary of Laboratory Test Results	7
Table 4-1	Geotechnical Discussions and Preliminary Design Advice	9

FIGURES

- 1 Site Locality Plan
- 2 Borehole Location Plan

APPENDICES

- A Borehole Logs and Explanatory Notes
- B Geotechnical Laboratory Testing Certificates
- C Important Information

Environmental Investigations Australia Contamination | Remediation | Geotechnical Page 1

1 INTRODUCTION

1.1 BACKGROUND

At the request of Tonkin Zulaikha Greer Architects Pty Ltd (TZG) on behalf of Caliph, Environmental Investigations Australia Pty Ltd (EI) has carried out a Preliminary Geotechnical Investigation (PGI) for the proposed development at 75 Mary Street in St Peters, NSW (the Site).

This PGI report has been prepared to provide preliminary geotechnical advice and recommendations in support of a development application and the preparation of initial concept designs for the proposed residential development. Work has been carried out in accordance with the scope of works outlined in our proposal referenced P12722.2, dated 2 September 2014 and your authorisation to proceed dated 11 September 2014

A Detailed Site Assessment and Preliminary Acid Sulfate Soil Assessment for the Site was also undertaken by El and is presented separately in the report referenced E22317 AA. The Detailed Site Assessment and Preliminary Acid Sulfate Soil Assessment provide more information on environmental impact on the soils and groundwater at the site from past industrial use. These reports should be read in conjunction with this report.

In 18 September 2015, the PGI report (Ref. E22317 GA_Rev 3) was revised in response to an amendment of the development drawings dated 14 September 2015. Changes to the final site configuration post site development were proposed in the updated development drawings. Relevant geotechnical implications resulted by the amendment are discussed in sections below.

1.2 PROPOSED DEVELOPMENT

Caliph supplied EI with drawings prepared by TZG titled:

- Proposed Site Plan Aerial View, dated 14 September 2015 (Precinct 75, 75 Mary Street);
- B1 Basement Parking Plan, dated 14 September 2015 (Precinct 75, 75 Mary Street);
- B2 Basement Parking Plan, dated 14 September 2015 (Precinct 75, 75 Mary Street);
- Ground Floor, dated 14 September 2015 (Precinct 75, 75 Mary Street);
- Site Sections, dated 14 September 2015 (Precinct 75, 75 Mary Street).

At the time of undertaking the ground investigation, based on the drawings provided, El understood that the proposed development would involve the demolition of the existing buildings at the central and eastern portion of the site, redevelopment of four existing commercial buildings and the construction of three four- to eight-storey buildings over a one to three level stepped basement profile. We anticipated that the basement will extend to a maximum depth of approximately 6 m below existing ground level (mBGL).

1.3 INVESTIGATION OBJECTIVES

The objective of the PGI is to assess site surface and subsurface conditions and to provide preliminary geotechnical advice and recommendations addressing the following:

- Excavation support requirements, including preliminary geotechnical design parameters for retaining walls and shoring systems;
- Excavation methodologies, limitations and monitoring requirements;
- Approaches to limit potential impacts on adjacent structures, services and roads;
- Building and retaining wall foundation options, including;
 - Preliminary design parameters

- ▶ Earthquake loading factor in accordance with AS1170.4:2007;
- Subgrade preparation and earthworks requirements;
- Construction constraints including groundwater management requirements, if necessary; and
- The requirement for additional geotechnical investigations.

1.4 SCOPE OF WORKS

The scope of works for the PGI was based on the original set of architectural drawings and included:

- Review of available information from in-house sources;
- Preparation of appropriate health and safety plans;
- Review relevant soil landscape and geological maps for the project area;
- Dial Before You Dig (DBYD) services search and scan of proposed borehole locations for buried conductive services using a licensed service locator;
- Concrete coring through existing concrete hardstand at four borehole locations (BH1 to BH3 & BH6);
- Drilling of six boreholes (BH1 to BH6) by a truck-mounted drill rig using solid flight augers equipped with a 'tungsten-carbide' bit (T-C bit). Boreholes reached T-C bit refusal between 2.81 mBGL and 4.90 mBGL. Approximate borehole locations are shown in Figure 2;
- Standard Penetration Testing (SPT) during drilling of the boreholes at between 0.5 m and 1.5 m depth intervals to
 assess soil strength and collect soil samples for laboratory testing. Soil samples were sent to Macquarie Geotech
 Pty Ltd (Macquarie), a National Australian Testing Authority (NATA) accredited laboratory;
- Continuation of BH1 to BH6 from T-C bit refusal, using NMLC coring techniques, to termination depths between 6.52 mBGL and 9 mBGL. Rock core recovered from the boreholes was logged, boxed and delivered to Macquarie for testing and storage;
- Measurements of groundwater seepage/levels from boreholes during and immediately post drilling;
- Installation of groundwater monitoring wells in five of the boreholes (BH1/MW1 to BH5/MW5);
- Backfilling the remaining borehole with drilling spoil in the reverse order of excavation and capping of the surface with concrete; and
- Preparation of this PGI report.

The fieldwork was supervised by a Geotechnical Engineer and included logging of subsurface conditions during drilling and locating of boreholes from existing structures.

1.5 INVESTIGATION CONSTRAINTS

The PGI was limited by the preliminary intent of the investigation and the presence of structures and vehicles at the site at the time of the investigation. The discussions and advice presented in this report are intended for the development of initial concept designs for the development. Further geotechnical investigations should be carried out before final design to confirm both the geotechnical and groundwater model, and the preliminary design parameters provided in this report.

2 SITE DESCRIPTION

2.1 SITE DESCRIPTION AND IDENTIFICATION

The site identification details and associated information are presented in **Table 2-1** while the site locality is shown in **Figure 1**.

Table 2-1 Summary of Site Information

Information	Detail
Street Address	75 Mary Street, St Peters, NSW 2044
Lot and Deposited Plan (DP) Identification	Lot 1 in DP 556914, DP 745014, DP 745657, Lot 1 & Lot A DP 87885 and DP 180958.
Local Government Authority	Marrickville Council
Parish	Petersham
County	Cumberland
Current Zoning	IN2 – Light Industrial (Marrickville Local Environment Plan, 2011)
Site Description	The site is irregular in shape. It is bounded to the southwest by Mary Street, to the northwest by residential buildings followed by Unwins Bridge Road, and to the northeast by Edith Street. The site is currently occupied by eleven one- to three-storey brick commercial buildings. All paved surfaces were found to be in good condition.
Site Area	The site is approximately 15,333 \mbox{m}^2 (from Watson Buchan Consulting Surveyors Pty Ltd).

2.2 LOCAL LAND USE

The site is situated within an area of light industrial use. Current uses on surrounding land are described in Table 2-2.

Table 2-2 Summary of Local Land Use

Direction Relative to Site	Land Use Description			
Northeast	Edith Street, with single- to two-storey residential brick buildings beyond.			
Northwest	Single-storey residential brick buildings with Unwins Bridge Road beyond			
Southeast	Single- to two-storey residential brick and weatherboard buildings.			
Southwest	Mary Street, with single- to two-storey brick residential buildings and a two-storey commercial brick warehouse beyond.			

2.3 REGIONAL SETTING

The site topography, geological and hydrogeological information for the locality is summarised in Table 2-3.

Table 2-3 Topographic, Geological and Hydrogeological Information

Attribute	Description
Topography	The regional topography consists of gently undulating rises with local relief to 30 m. Slopes are usually <5%. Broad rounded crests and ridges with gently inclined slopes. The site is on the side slopes of a minor ridgeline running approximately southwest-northeast along the alignment of the Princes Highway. Local topography slopes gently downwards to the south, at approximately 5 degrees
Regional Geology	Information on regional sub-surface conditions, referenced from the Department of Mineral Resources Geological Map Sydney 1:100,000 Geological Series Sheet 9130 (DMR 1991) indicates the site to be underlain by Ashfield Shale of the Wianamatta Group, which typically comprises black to dark grey shale and laminite. Ashfield Shale generally weathers into silty clay of medium to high plasticity.
Soil Landscapes	 The Soil Conservation Service of NSW Sydney 1:100,000 Soil Landscapes Series Sheet 9130 (2nd Edition) indicates that the residual landscape at the site likely comprises the Blacktown Landscape. Soils are generally shallow to moderately deep (< 1 m) red and brown podzolic soils on upper slopes; deep (150-300 cm) yellow podzolic soils and soloths on lower slopes. Land is dominantly intensive residential and light and heavy industry. Landscape limitations include moderately reactive, highly plastic subsoil and poor soil drainage.
Acid Sulfate Soils (ASS)	In accordance with the Marrickville Local Environmental Plan 2011 Acid Sulfate Soils Map – Sheet ASS_004, the site falls within a category classified as Class 5 Acid Sulfate Soils (ASS).

An online search was conducted using the NSW Natural Resource Atlas (NRAtlas), which records relevant information pertaining to all licensed water bores for the state of New South Wales revealed six (6) registered, monitoring bores located within 1 km of the site. A review of groundwater bore records for bores within 1 km of the site with standing water levels is summarised in **Table 2-4**.

Table 2-4 Summary of NRA Atlas registered Groundwater Bores

Bore No.	Drilled Date	Bore Depth (mBGL)	SWL (mBGL)	Authorised Bore Purpose
GW109821	1997	35.00	14.50	Monitoring Bore
GW109822	1997	10.45	3.00	Monitoring Bore
GW109823	2000	29.00	12.50	Monitoring Bore
GW109824	2005	20.70	4.51	Monitoring Bore
GW109825	2005	22.00	14.90	Monitoring Bore

3 INVESTIGATION RESULTS

3.1 STRATIGRAPHY

For the development of a site-specific geotechnical model, the observed stratigraphy of shallow fill overlying a residual soil and weathered bedrock profile has been grouped into four geotechnical units. A summary of the subsurface conditions across the site, interpreted from the investigation results, is presented in **Table 3-1**. More detailed descriptions of subsurface conditions at the test locations are available in the borehole logs presented in **Appendix A**. The details of the method of soil and rock classification, explanatory notes and abbreviations adopted in the borehole logs are also presented in **Appendix A**.

Unit	Material	Depth (mBGL) to Top of Unit ¹	Observed Thickness (m)	Material Description ¹	Comments
1	Fill	0	0.3 to 0.7	ASPHALT and CONCRETE over mixed FILL	Asphalt and concrete hardstand up to 190 mm thick overlying Sandy CLAY, clayey SILT, CLAY, silty GRAVEL, gravelly CLAY and gravelly SAND with some brick and glass fragments. Fill is inferred to be uncontrolled and poorly compacted.
2	Residual Soil and Extremely Weathered Shale	0.3 to 0.7	2.3 to 2.7 Silty CLAY and CLAY Silty CLAY and CLAY CLAY Silty CLAY and CLAY SILTY CLAY SILTY CLAY AND SILTY CLAY SILTY SILTY CLAY SILTY CLAY SILTY SILTY CLAY SILTY		
3	Distinctly Weathered Shale	2.5 to 3.0	4.1 to 4.7	MUDSTONE and SHALE	Generally distinctly weathered, very low to low strength, mudstone and shale. 0-10° bedding. Defects within Unit 3 are generally closely spaced (< 50 mm spacing) sub-horizontal bedding partings, crushed seams and decomposed seams. Some minor joint sets at 30-45° were observed. Unit 3 is classified as Class V to Class IV Shale in accordance with Pells (2004).
4	Slightly Weathered to Fresh Shale	6.5 to 7.5	N/A ²	SHALE	Slightly weathered to fresh, low to medium strength shale. 0-10° bedding, <1-3 mm thick. Defects within Unit 4 are generally moderately spaced (~ 200 mm spacing) sub-horizontal bedding partings with occasional joints inclined to 80°. Unit 5 is classified as Class III Shale in accordance with Pells (2004).

Table 3-1 Sun	mary of Inferred	Subsurface	Conditions
---------------	------------------	------------	------------

Notes:

1 Approximate depth below ground level at the time of our investigation. More detailed descriptions of subsurface conditions are available in the borehole logs in **Appendix A.** Depths may vary across the site.

2 Unit 4 was observed up to borehole termination depth in BH1, BH2, BH4 BH5 and BH6

3.2 **GROUNDWATER**

Groundwater seepage inflows were observed during the drilling of BH4, with standing groundwater measurements taken on 25 September 2014 and 8 October 2014. Groundwater measurements taken during drilling and during the monitoring visit are presented in **Table 3-2**.

 Table 3-2
 Summary of Groundwater Conditions

Borehole ID	Date of Observation	Depth to Groundwater (mBGL)
	24/09/2014	-
BH1/MW1	25/09/2014	3.85
	8/10/2014	3.16
	23/09/2014	-
BH2/MW2	25/09/2014	1.39
	8/10/2014	1.55
BH3/MW3	25/09/2014	-
BH3/MW3	8/10/2014	1.00
	24/09/2014	0.03
BH4/MW4	25/09/2014	1.14
	8/10/2014	1.79
	23/09/2014	-
BH5/MW5	25/09/2014	0.89
	8/10/2014	1.07

3.3 LABORATORY TEST RESULTS

Six soil samples and one groundwater sample were selected for laboratory testing to assess the following:

- Soil moisture content and Atterberg Limits (Liquid Limit and Plastic Limit); and
- Soil and groundwater aggressivity (pH, Chloride and Sulfate content and electrical conductivity).

A summary of soil and groundwater test results is provided in Table 3-3.

Fifteen rock core samples were tested by Macquarie to determine Point Load Strength Index (Is_{50}) values to assist with rock strength classification. The results of the testing are shown on the borehole logs at the appropriate depths.

Laboratory test certificates are presented in Appendix B

Preliminary Geotechnical Investigation 75 Mary Street, St Peters, NSW Report No. E22317 GA_Rev3, 18 September 2015

Page |7

Table 3-3 Summary of Laboratory Test Results

Test/ S	ample ID	BH1-3 (1.5-1.95 mBGL)	BH2-2 (0.5-0.95 mBGL)	BH2-3 (1.5-1.95 mBGL)	BH3-3 (1.5-1.95 mBGL)	BH4-2 (0.5-0.95 mBGL)	BH5-4 (1.5-1.95 mBGL)	MW3
Unit		Unit 2	-					
Materia Descrij		Silty CLAY	Groundwater					
Atterberg Limits	Liquid Limit (%)	56	64	-	54	58	59	-
	Plastic Limit (%)	19	23	-	20	20	21	-
	Plasticity Index (%)	37	41	-	34	38	38	-
Moistu	re Content (%)	17.2	42.9	-	18.3	35.4	19.3	-
	рН	-	-	5.4	-	-	-	4.8
Soil Aggressivity	Resistivity (Ω.cm)	-	-	12000	-	-	-	625
	Sulfate SO ₄ (mg/kg)	-	-	424.1	-	-	-	330
	Chloride Cl (mg/kg)	-	-	106.4	-	-	-	260

Notes:

1

More detailed descriptions of the subsurface conditions at borehole locations are available in the borehole logs presented in Appendix A.

4 GEOTECHNICAL DISCUSSIONS AND PRELIMINARY DESIGN ADVICE

The main geotechnical factors for the design of the development include:

- Basement excavatability.
- Basement excavation retention to prevent potential lateral deflections and ground loss as a result of excavations.
- Foundation design for building loads.
- The likelihood of the proposed basement excavation intersecting the groundwater table.

Geotechnical discussions and preliminary design advice is presented in **Table 4-1**. The advice and parameters presented in **Table 4-1** are intended for the development of initial concept designs. Further geotechnical investigation should be carried out before final design to confirm the preliminary design parameters provided here.

Table 4-1	Geotechnical Discussions and Preliminary Design Advice
-----------	--

			nts ² Discussions and Preliminary Design Advice ² Tunical Death to Tare of Unit 1 Tunical Death to Tare of Unit Tunical Death to Tare of Unit	nary Design Parameter	rs ²				
	Preliminary Design ¹	Geotechnical Constraints ²	Discussions and Preliminary Design Advice ²		Material ³		Unit 2 Residual Soil and Extremely Weathered Shale	Unit 3 Distinctly Weathered Shale	Unit 4 Slightly Weathered to Fresh Shale
				Material ³ Unit 1 Fill Typical Depth to Top of Unit (mBGL) ⁴ 0 Typical Depth to Top of Unit (mBGL) ⁴ 0 Bulk Unit Weight (KN/m ³) ⁵ 17 Elastic Modulus (MPa) 5 sidered for retention of material encountered during e constraints allow. eath the zone of influence of nearby structures/ retention will be required. able with a 20t Hydraulic Excavator with some hard d out in accordance with AS3798: 2007. This ng undertaken and to the preparation of basement Temporary ⁶ 2H:1V a typically the most economically viable retention ored walls may be more economically viable above of lomit lateral deflections where retention systems of nearby structures/ services/ pavements. tiven to mointoring lateral and vertical deflections of construction induced vibrations. Further discussion or design of deep foundations may be used for ystems. Preliminary Allowable Bearing Pressure (kPa) ⁸ N/A Allow Foundations used by founding in these uncontrolled materials. Classification of 'H2' provided that uncontrolled fill g construction. the possibility of differential settlement caused by ing the interface of differing materials. Further Preliminary Allowable Bearing Pressure (kPa) ⁸ Indrained shear strength, c_u(KPa) - - - Drai	0.3 - 0.7	2.5 - 3.0	6.5 - 7.5		
				Bulk U	nit Weight (kN/m³) ⁵	17	19	23	23
				Elast	tic Modulus (MPa)	5	25	50	250
Basement Excavations and Earthworks	Up to two levels of basement car parking. Excavation for the basement is expected to extend to a maximum depth	 Proposed excavation will likely encounter Units1, 2, and 3. 	 Temporary batters may be considered for retention of material encountered during basement excavation where site constraints allow. Where excavations extend beneath the zone of influence of nearby structures/ services/ pavements basement retention will be required. Units 1, 2 and 3 should be diggable with a 20t Hydraulic Excavator with some hard 	Angle ⁶	Temporary ⁶	2H:1V	1.5H:1V	1H:1V	-
	of approximately 6 m.		 ripping. All earthworks should be carried out in accordance with AS3798: 2007. This standard applies to any site filling undertaken and to the preparation of basement slab subgrades. 	Unit 2 Material 3 Unit 2 Material 3 Unit 2 Material 3 Unit 2 Typical Depth to Top of Unit (mBGL) 4 O 0 <th col<="" td=""><td>2H:1V</td><td>1H:1V</td><td>-</td></th>	<td>2H:1V</td> <td>1H:1V</td> <td>-</td>	2H:1V	1H:1V	-	
Excavation Retention			 Cantilevered retaining walls are typically the most economically viable retention method up to 5 m height. Anchored walls may be more economically viable above 5 m height and may be required to limit lateral deflections where retention systems 		0.63	0.3	-		
			 Consideration will need to be given to the interface of soil retention and rock support in excavations. Further discussion of this is given in Section 4.1. 		4.5	1500 kPa ultimate stress block			
			Its 2 Material 3 Unit 1 Fill Residual Soil and Weathered Shale Instrume Weathered Shale In	0.15	-				
Foundations	 Two to eight-storey buildings over one to two levels of stepped basement 	Final excavation levels likely to be in Unit 3 material.		150	700	2000			
	parking.			-	50	-	-		
				ters given in this table for design of deep foundations may be used for of basement retention systems. Preliminary Allowable Bearing Pressure (kPa) ⁸ Shallow Foundations N/A ow footings should found below Unit 1 materials to avoid the potential of Ily large settlements caused by founding in these uncontrolled materials. footings on Unit 2 – Residual Soil should be designed in accordance with :2011 based on a Site Classification of 'H2' provided that uncontrolled fill is stripped before footing construction. Undrained shear strength, cu (kPa) - Drained friction angle, \$\phi'(^{\circ}) - - - - Deep Foundations Deep Foundations - - - - Ultimate Vertical End Bearing - <t< td=""><td>23</td><td>-</td><td>-</td></t<>	23	-	-		
				Drained of	cohesion, c' (kPa)	-	15	-	-
			 Deep foundations may be considered where high lateral or axial loads are to be supported. 		Ũ	N/A	600	2000	6000
			We recommend that a Preliminary Geotechnical Strength Reduction Factor (GSRF) of 0.40 is used for the preliminary design of piled support in accordance Shaft	0	50	75	350		
			with AS 2159:2009 based upon the preliminary nature of the soil parameters given. The GSRF may be increased upon finalising the development details and subject	Adhesior		0	25	37.5	175
						Medium to Low	Low	Low	Low

					Prelin	ninary Design Paramete	rs ²	
	Preliminary Design ¹	Geotechnical Constraints ²	Discussions and Preliminary Design Advice ²	Material ³	Unit 1 Fill	Unit 2 Residual Soil and Extremely Weathered Shale	Unit 3 Distinctly Weathered Shale	Unit 4 Slightly Weathered to Fresh Shale
				Typical Depth to Top of Unit (mBGL) ⁴	0	0.3 - 0.7	2.5 - 3.0	6.5 - 7.5
				Bulk Unit Weight (kN/m ³) ⁵	17	19	23	23
				Elastic Modulus (MPa)	5	25	50	250
Management	basement is expected to extend up to a maximum depth of approximately 6 mBGL.	investigation indicate groundwater at approximately 1 to 2 mBGL.	 Groundwater flows may be moderate from fractured zones within the rock mass. Groundwater management options may include the grouting of water bearing fractures during excavation or the installation of drainage systems behind the excavation retention facing. Further investigation is recommended to determine the extent of seasonal variation on the groundwater table. Development of a Dewatering Management Plan will be required. Surface water seepage into these excavations may occur during and following periods of rainfall. Surface water should be controlled by diverting overland flows away from excavations and may be managed by conventional sump and pump methods. 					
Soil and Groundwater Aggressivity	 Proposed structure will incorporate buried concrete and steel elements. AS2159:2009 gives guidelines for foundation susceptibility to soil and groundwater aggressivity. 	Low permeability soils above and below the groundwater table.	 Analysis of the pH, chloride and sulfate content and electrical conductivity of the soil and groundwater was compared with criteria in AS 2159:2009, providing the following exposure classifications: 'Mildly aggressive' for buried concrete structural elements; and 'Moderately aggressive' for buried steel structural elements. 					
Earthquake Site Risk Classification			 AS1170.4:2007 indicates an earthquake subsoil class of Class B_e – Rock Site for the site. AS 1170.4:2007 indicates that the hazard factor (z) for Sydney is 0.08. 					

Notes:

Design details are based on proposed development details provided by TZG at the time of the preparation of this report.

Advice and parameters presented in this PGI report are intended for DA purposes and for the development of initial concept designs for the development. Further geotechnical 2 investigation should be carried out before final design to confirm both the geotechnical model and the preliminary design parameters provided in this report.

- 3 More detailed descriptions of subsurface conditions are available in the borehole logs in Appendix A. Depths may vary across the site.
- 4 Approximate depth below ground level at the time of our investigation. More detailed descriptions of subsurface conditions are available in the borehole logs in Appendix A. Depths may vary across the site.
- 5 Unit Weight is based on visual estimate only, order of accuracy is about 10%.

6 Batter angles recommended are based upon ground conditions encountered in the borehole locations only. Ground conditions may vary and preliminary batter angles should be confirmed by additional geotechnical investigations and inspections during construction by an experienced geotechnical engineer. Batter angles provided assume an overall batter height of less than 5 m. Should batters extend beyond 5 m, batter designs should be carried out by an experienced geotechnical engineer and may need to incorporate benches. Batters given for rock units may only be used with consideration of rock support systems such as pattern bolting, spot bolting or shotcreting based upon the rock mass characteristics encountered during excavation. Inspection during construction by an experienced geotechnical engineer or engineering geologist will be required to determine temporary and permanent rock support requirements. Permanent batters may require surface protection to prevent erosion and slaking.

- Earth pressures are provided on the assumption that the ground behind the retaining wall is flat and drained.
- 8 Bearing pressures given are indicative only and will vary according to footing type, shape and embedment and should be confirmed by additional geotechnical investigations, design checks and foundation inspections during construction by an experienced geotechnical engineer.
 - To adopt these bearing pressures we have assumed that:
 - Shallow footings have an embedment depth of at least 750mm into the founding material.
 - The bases of all footings are cleaned of loose debris and water and inspected by a suitably qualified Geotechnical Engineer prior to footing construction to verify that ground conditions meet design assumptions.
- 9 Ultimate geotechnical strengths are provided for use in limit state design. Allowable or serviceability bearing pressures and side adhesions may be estimated using factors of safety of 3 and 2, respectively. These are the factors of safety generally adopted in geotechnical practice to limit settlements to an acceptable level for conventional building

- greater, into the respective Unit.
- engineer.
- foundation inspections during construction.
- mechanics in accordance with AS4678-2002 Earth Retaining Structures.
- 11 To adopt these parameters we have assumed that:
 - Piles have an embedment depth of at least two pile diameters or 1 m, whichever is greater, into the relevant founding material;
 - There is intimate contact between the pile and foundation material; -
 - Potential soil and groundwater aggressivity will be considered in the design of bored piles; -
 - be used: and
 - in the design.
- 12 Susceptibility to liquefaction during an earthquake is based on the following definition: Medium to very dense sands, stiff to hard clays, and rock low
 - Medium Loose to medium dense sands, soft to firm clays, or uncontrolled fill below the water table High Very loose sands or very soft clays below the water table

Environmental Investigations Australia Contamination | Remediation | Geotechnical

structures, typically less than 1% of the minimum footing width. Assumes the base of pile holes are clean and penetrate at least 1.0m or 2 pile diameters, whichever is Bearing pressures may vary and must be confirmed by additional geotechnical investigations and foundation inspections during construction by an experienced geotechnical Higher bearing pressures may be applied upon confirmation by additional geotechnical investigations and subject to an experienced geotechnical engineer carrying out Side adhesion values given assume there is intimate contact between the pile and foundation material. Design engineer to check both 'piston' pull-out and 'cone' pull-out

The bases of all pile excavations are cleaned of loose debris and water and inspected by a suitably qualified Geotechnical Engineer prior to pile construction to verify that ground conditions meet design assumptions. Where groundwater ingress is encountered during pile excavation, concrete is to be placed as soon as possible upon completion of pile excavation. Pile excavations should be pumped dry of water prior to pouring concrete, or alternatively a tremmie system could

An experienced Geotechnical Engineer has reviewed the pile designs to assess whether all recommendations presented in this report have been incorporated

4.1 EXCAVATION RETENTION

Rigid retaining structures, such as propped or anchored walls, should be adopted to limit lateral and vertical movements when in close proximity to existing buildings, buried services and pavement. We recommend the use of closely spaced soldier pile walls or contiguous reinforced concrete bored pile walls that are socketed into Class III Shale or better.

If cantilevered piles are employed for the design, relatively flexible shoring systems may be used, adopting a triangular earth pressure distribution using active pressures presented in **Table 4-1**. For design of rigid walls, a trapezoidal earth pressure distribution should be used with a maximum pressure of $0.65^{*}K_{a}^{*}\gamma^{*}H$ (kPa) where 'H' is the effective vertical height of the wall in metres. For excavations spanning the interface of soil and rock, 'H' may be taken as the depth to a zero active earth pressure coefficient.

In addition, design of retaining walls should consider the following:

- If piled retaining walls are to provide permanent support to proposed structures, pile sockets in rock may need to be longer to accommodate additional lateral and axial loads. Anchoring may be required for additional lateral support.
- Care must be taken to ensure that the bored piles found in rock below neighbouring foundation and basement levels, where present.
- The effect of stress relief in the rock on neighbouring foundation systems and pavements, resulting from proposed excavations, should be considered in the retaining wall design.
- Static water pressures should be taken into consideration, unless subsoil drainage is provided behind retaining walls. A hydrostatic pressure distribution could be used for this analysis.

Appropriate surcharge loading from construction equipment and vehicular traffic at finished surface level should be adopted. Any applicable surcharge loads should be taken into account in the retention design.

We recommend that a geotechnical engineer inspect battered and unsupported excavations and excavation support installations to confirm inferred geotechnical conditions. This will allow for the assessment of design assumptions and to provide further advice with regards to excavation retention / support and proposed construction methodologies, if required.

4.2 BASEMENT EXCAVATION MONITORING

Consideration should be made to the impact of the proposed development upon neighbouring structures. Basement excavation retention systems should be designed so as to limit lateral deflections to allowable levels.

Contractors should also consider the following limits associated with carrying out excavation and construction activities:

- Limit lateral deflection of temporary or permanent retaining structures;
- Limit vertical settlements of ground surface at common property boundaries and services easement; and
- Limit peak particle velocities (ppv) from vibrations, caused by construction equipment or excavation, experienced by any structure within bounding properties and the services easement.

Monitoring of deflections of retaining structures and surface settlements should be carried out by a registered surveyor at agreed points along the excavation boundaries and along existing building foundations/ services/ pavements and other structures located within or near the zone of influence of the excavation. Measurements should be taken:

- Prior to commencement of excavations;
- Immediately after installation of any temporary or permanent retaining structures;
- Immediately after the excavation has reached a depth of 1.5 m, and each 1.5 m depth increment thereafter;
- Immediately after the excavation has reached bulk excavation level; and
- Immediately after backfilling behind retaining structures.

Vibration monitoring should be carried out periodically during excavation works, particularly at the base of external walls of existing buildings in closest proximity to the excavation and easement. El recommends an upper limit for ppv of 3 mm/sec is adopted for sensitive structures such as the Telstra, Ausgrid and Sydney Water mains (or as recommended by utility owner), 10 mm/sec is adopted for residential buildings and 20 mm/sec is adopted for commercial and industrial buildings or reinforced concrete structures.

An ongoing monitoring programme will not be required if the contractor can verify, based on trials carried out at the commencement of the works and with the agreement of a Geotechnical Engineer, that the ppv will not exceed set limits. However, should equipment used during excavation and construction works vary from that used during the trial or as agreed, further vibrations assessments by a Geotechnical Engineer, and/ or an ongoing monitoring programme, may be required. Alternatively, saw cutting the perimeter of the excavation in medium or higher strength, if encountered, may limit the impact of vibrations resulting from rock hammering on adjacent structures.

Should vibrations, settlements or deflections exceed set limits, we recommend the following:

- Cease excavation works and notify the Geotechnical Engineer immediately;
- Backfill excavations or support exposed excavations with buttresses or props, where settlement/ lateral movement limits have been exceeded; and
- Develop an alternative excavation/ support plan in conjunction with the Structural and Geotechnical Engineers.

4.3 FOUNDATIONS

Should the proposed development be supported by shallow pad or strip footings or a stiffened raft slab on Unit 2 or 3 material variable ground conditions may cause difficulties for subgrade preparation. Selection of footing types and founding depth will need to consider the risk of adverse differential ground movements within the foundation footprint and between high level and deeper footings. Unless an allowance for such movement is included in the design of the proposed development, we recommend that all new structures found on natural materials with comparable end bearing capacities. Possible features designed to accommodate potential differential movement of the structures may include movement joints, dowelled connections or shear keys.

4.4 CONSTRUCTION CONSIDERATIONS FOR THE ASHFIELD SHALE FORMATION

Long and intermediate term durability of exposed residual soil and rock is a major concern within the Ashfield Shale formation. Exposure of residual soil and weathered rock due to excavation can lead to rapid degradation of the material. Slaking of rock faces, erosion of soil cuts and softening of foundation subgrade material may occur quickly after excavation. Formations will need to be protected with blinding concrete without undue delay to limit any degradation of these materials.

5 CONCLUSIONS

Based on the findings of this report and within the limitations of geotechnical investigations, EI considers the following geotechnical factors will influence the possible development of the site, including:

- Basement excavatability.
- Basement excavation retention to prevent potential lateral deflections and ground loss as a result of excavations.
- Foundation design for building loads.
- The likelihood of the proposed basement excavation intersecting the groundwater table.

In summary, and considering the limitations of geotechnical investigations, EI considers there is a low risk of geotechnical conditions preventing the proposed development if the recommendations of this report are considered for the preliminary design and construction of the development.

6 RECOMMENDATIONS FOR FURTHER GEOTECHNICAL SERVICES

The adopted investigation scope was limited by the investigation intent and by the presence of structures at the site during the investigation. As detailed in Section 1, revised drawings indicating options to take the basement to two levels were received after the ground investigation and issue of the draft report. As such the target depth of the boreholes was based on the original set of drawings that indicated a single–level basement. If a two level basement (or more) option is chosen, further geotechnical investigations, consisting of a minimum of three boreholes, should be carried out to confirm the results and address any limitations prior to adoption of the recommendations of this report for detailed design. These investigations should be carried out once preliminary design and construction details are available and should include:

Excavations

- Dilapidation surveys should be carried out on existing structures that may be impacted by any proposed excavations, particularly where located within the zone of influence of excavations. These surveys should be carried out by a qualified structural engineer and/or geotechnical engineer prior to and following completion of construction works.
- All excavated material transported off site should be classified by EI in accordance with NSW EPA (2014) Waste Classification Guideline, Part 1: Classifying Waste.

Foundations

- Further testing should be carried out as part of the recommended additional ground investigation prior to final design to confirm the design parameters given in this report for the formulation of concept designs.
- If higher allowable bearing pressures are required for the design of deep foundations, additional deep cored boreholes to confirm the quality of Unit 4 Shale should be conducted. Boreholes should be taken a minimum of 3m below the proposed basement excavation level.

Construction

- Working platforms for construction plant, placed on in-situ materials or on engineered fill, should be designed by an experienced and qualified geotechnical engineer.
- A suitably qualified geotechnical engineer from EI is to assess the condition of exposed material at foundation or subgrade level to assess the ability of the prepared surface to act as a foundation or as a subgrade.
- On-going monitoring of ground vibrations, settlements and lateral movements in conjunction with survey results should be carried out during basement excavation.
- Regular inspections by an engineer from EI of battered and unsupported excavations where localised
 excavations are proposed, to confirm inferred geotechnical conditions, to assess the suitability of design
 assumptions and to provide further advice with regards to excavation retention/ support and proposed
 construction methodologies, if required.

7 STATEMENT OF LIMITATIONS

The adopted investigation scope was limited by site access restrictions due to site conditions at the time of our investigation and by the investigation intent. The advice and parameters presented in this PGI report are intended for the development of initial concept designs for the development. Further geotechnical investigation should be carried out before final design to confirm both the geotechnical model and the preliminary design parameters provided in this report.

We draw your attention to the document "Important Information", which is included in **Appendix C** of this report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by EI, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.

Should you have any queries regarding this report, please do not hesitate to contact El.

8 References

AS1170.4:2007, Structural Design Actions, Part 4: Earthquake Actions in Australia, Standards Australia.

AS1726:1993, Geotechnical Site Investigations, Standards Australia.

AS2159:2009, Piling - Design and Installation, Standards Australia.

AS2870:2011, Residential Slabs and Footings, Standards Australia.

AS3798:2007, Guidelines on Earthworks for Commercial and Residential Developments, Standards Australia.

Chapman, G.A. and Murphy, C.L. (1989), Soil Landscapes of the Sydney 1:100000 sheet. Soil Conservation Services of NSW, Sydney.

DMR (1983) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1). Geological Survey of New South Wales, Department of Mineral Resources.

Pells (2004) Substance and Mass Properties for the Design of Engineering Structures in the Hawkesbury Sandstone, Australian Geomechanics Journal, Vol 39 No 3

Pettifer and Fookes 1994, A Revision of the Graphical Method for Assessing the Excavatability of Rock, Quarterly Journal of Engineering Geology and Hydrogeology.

9 ABBREVIATIONS

AHD	Australian Height Datum
BGL	Below Ground Level
BH	Borehole
DP	Deposited Plan
El	Environmental Investigations
ESA	Environmental Site Assessment
NATA	National Association of Testing Authorities, Australia
PGI	Preliminary Geotechnical Investigation

Preliminary Geotechnical Investigation 75 Mary Street, St Peters, NSW Report No. E22317 GA_Rev3, 18 September 2015

FIGURES

Preliminary Geotechnical Investigation 75 Mary Street, St Peters, NSW Report No. E22317 GA_Rev3, 18 September 2015

APPENDIX A

BOREHOLE LOG REPORTS AND EXPLANATORY NOTES

BOREHOLE: BH1/MW1/ASS1

Project Location Position Job No.

Client

New Mixed Development 75 Mary Street, St Peters NSW Refer to Figure 2 E22317 Caliph

331111.5 m 6246011.1 m Contractor Traccess Pty Ltd Drill Rig Multi-Drill 3000 Inclination -90°

East

North

Sheet 1 OF 2 Date Started 24/9/14 Date Completed 24/9/14 Logged SK Date: 24/9/14 Checked AM Date: 9/10/14

		Dril	ling	-	Sampling			-	Field Material Desc				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
ЪТ	-		0-	0.14				-	FILL: CONCRETE; 140 mm.	-		CONCRETE HARDSTAND	T
			-	0.30	BH1-1 ES		XX	-	FILL: Sandy CLAY: low plasticity, grey-brown, sand is fine to	D	-	FILL	+
			-		0.14-0.30 m PID = 4.2 ppm			СН	medium grained, with brick fragments, no odour.	^─	\square	RESIDUAL SOIL	Τ
			-		ASS1-1 ES			İ	CLAY; high plasticity, brown with red mottling, trace fine to medium, subrounded ironstone gravel, strong hydrocarbon				
			-		0.30-0.50 m SPT 0.50 m			l	odour.		F -		
			1		1,3,4 N=7						St		
	E				BH1-2		[M (<pl< td=""><td></td><td></td><td></td></pl<>			
_		빌		1.30	PID = 176 ppm ASS1-2 ES				From 1.3 m, as above, grey with orange-red mottling, no	-		-	
AD/T		GWNE	-		1.30-1.50 m				odour.				
			-		SPT 1.50 m 5,7,10						VSt		
			-	2.00	N=17 BH1-3								
			2—	2.00	PID = 8.1 ppm		<u> </u>	-	SHALE; brown-red, inferred extremely low strength, inferred			WEATHERED ROCK	+
	F		-						extremely weathered.				
			-	2.40	-				From 2.4 m, as above , inferred very low strength, inferred		-	ROCK	+
	н		-						distinctly weathered.				
				2.81	SPT 2.80 m	-			Continued as Cored Borehole	+			+
			3 —		3 HB N=3/10mm				Continued as Coled Bolehole				-
			-		BH1-4								
			-										
			-										
			-										
			4 —										-
			-										
			-										
8			-										
014-07			-										
1.03 20			5 —										
EIA			_										
-05 Prj			-										
014-07			-										
1.03 2			_										
EIA			6—										-
2			-										
- DG			_										
tu Too			_										
iii n													
-ab an			-										
atgel I			7—										
004 D			_										
8.30.			-										
14:21			-]									
0/2014			-										
09/10			8 —	1									
File>>			-	1									
awing			-										
Ŭ.			-										
7.GP,			-										
E223			9 —										-
OLE 3			-										
REHC			-										
AU BO			-										
'S B			-										
EA LIB 103 GL Log IS AU BOREHOLE 3 £22317 GPJ <-OnawingFale> 08/10/2014 14:21 8:30.004 Dagle Lab and in Siu Tool - DGD Lb: EIA 1.03 2014-07/65 Pij: EIA 1.03 2014-07/65	1		10 —	<u> </u>	This borehole	e log	g shoul	d be	read in conjunction with Environmental Investigations Austra	alia's a	accor	npanying standard notes.	
EIA UB													

		\wedge		liation Ge	stralia	Proje Loca Posit Job I Clien	tion 75 Mary Street, St Peters NSW tion Refer to Figure 2 No. E22317		ast Iorth Contra Drill R nclina	actor	BOREHOLE: 331111.5 m 6246011.1 m Traccess Pty Ltd Multi-Drill 3000 -90°	BH1/MW1/ Sheet Date Started Date Completed Logged SK Checked AM	2 OF 24/9/1 24/9/1 Date:	2
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STR Is ₍₅	ERREI ENGTI "MPa	H DEFECT DE & Additional (DI	ERAGE EFECT PACING (mm)
	URN 25/09/14	100	10 (35) 4 (24) 87 (87)		2.81		Continuation from non-cored borehole SHALE; bedding dipping 0-5 degrees, pale grey with medium to high strength ironstone bands up to 60 mm thick SHALE; bedding dipping 0-10 degrees, <1-3 mm thick, average spacing = <1-2 mm, grey-dark grey with orange iron staining. SHALE; bedding dipping 0-5 degrees, <1-3 mm thick, average spacing = <1-10 mm, dark grey-grey. Hole Terminated at 7.00 m Target depth reached. Borehole converted to monitoring well.	DW			2.81-3.00: HB 3.00-3.38: BPx8 0 - 5° PR RF 3.03-3.06: CS 30 mm, gravel, 3.07-3.08: CS 10 mm, gravel, 3.10-3.11: DB 3.15-3.16: CS 10 mm, gravel, 3.27: JT 0 - 10° UN SF SN 3.40-3.43: JT 0 - 60° CU RF F 3.44-3.95: BPx10 0 - 10° PR 1 mm 3.66-3.66: JT 0 - 40° ST RF Fe S 3.66-3.66: JT 0 - 40° ST RF Fe 3.44-3.95: DPx10 0 - 10° PR 1 mm 4.22-4.24: JT 45 - 90° CU RF 4.28-4.32: CS 40 mm, gravel, 4.38-4.42: JT 45 - 90° CU RF 4.28-4.32: CS 40 mm, gravel, 4.38-4.42: JT 45 - 90° CU RF 4.28-4.32: CS 10 mm, gravel, 5.38-5.46: JT 0° PR RF Fe SN 5.20: JT 20° PR RF Fe SN 5.20: JT 20° PR RF Fe SN 5.23-5.26: CS 30 mm, gravel, 5.26: JT 20° PR RF Fe SN 5.38-5.46: CS 80 mm, gravel, 5.38-5.46: CS 80 mm, gravel, 5.77-5.76: CS 10 mm, gravel, 5.78-5.619: DZ 240 mm, gravel, 5.79-5.76: CS 10 mm, gravel, 5.79-5.77: CS 10 mm, gravel, 5.79-5.76: CS 10 mm, gravel, 5.79-5.77: CS 10 mm, gravel, 5.79-5.76: CS 10 mm, gravel, 5.79-5.76: CS 10 mm, gravel, 5.79-5.76: CS 10 mm, gravel, 5.79-5.77: CS 10 mm, gravel, 5.	fine-coarse, angular fine-medium, angular fine-medium, angular fine-medium, angular fine-medium, angular SF Fe SN avg sp = 10-100 N e SN rplasticity, firm. fine-medium, angular Fe SN medium-coarse, angular Fe SN fine-medium, angular N fine-medium, angular N fine-medium, angular N fine-medium, angular Fe SN fine-medium, angular Fe SN M fine-medium, angular Fe SN M fine-medium, angular Fe SN M fine-medium, angular Fe SN M fine-medium, angular Fe SN M		
				10		Thi	is borehole log should be read in conjunction with E	inviror	nmer	ital Inv	estigations Australia's accom	panying standard notes.		

Environmental Investigations Australia Contamination | Remediation | Geotechnical

BOREHOLE: BH1/MW1/ASS1

Project Location Position Job No.

Client

New Mixed Development 75 Mary Street, St Peters NSW Refer to Figure 2 E22317 Caliph

331111.5 m North 6246011.1 m Contractor Traccess Pty Ltd Drill Rig Multi-Drill 3000 Inclination -90°

East

Sheet 1 OF 1 Date Started 24/9/14 Date Completed 24/9/14 Logged SK Date: 24/9/14 Checked AM Date: 9/10/14

		Dri	ling		Sampling				Field Material Desc			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	PIEZOMETER DETAILS
Ы	-		0	0.14 0.30	BH1-1 ES 0.14-0.30 m PID = 4.2 ppm			- - CH	FILL: CONCRETE; 140 mm. FILL: Sandy CLAY; low plasticity, grey-brown, sand is fine to medium grained, with brick fragments, no odour.	- D	-	Gatic Cover Concrete
AD/T	E	GWNE	- - 1 - -	1.30	ASS1-1 ES 0.30-0.50 m SPT 0.50 m 1,3,4 N=7 BH1-2 PID = 176 ppm ASS1-2 ES 1.30-1.50 m SPT 1.50 m 5,7,10 N=17			Сп	CLAY; high plasticity, brown with red mottling, trace fine to medium, subrounded ironstone gravel, strong hydrocarbon odour.	/ M 	F - St	A Sand
	F		2	2.00	BH1-3 PID = 8.1 ppm			-	SHALE; brown-red, inferred extremely low strength, inferred extremely weathered.			2x uPVC 50 mm casing
	н		-	2.81	SPT 2.80 m				From 2.4 m, as above , inferred very low strength, inferred distinctly weathered.		-	
NMLC		85-90% RETURN	3 — - - - - - - - - - - - - - - - - - - -	3.38	SF1 2.80 m 3 HB N=3/10mm BH1-4 C 2.81-4.05 m 3.46 m C 4.05-6.25 m			-	SHALE; bedding dipping 0-5 degrees, pale grey with orange iron staining. SHALE; bedding dipping 0-10 degrees, <1-3 mm thick, average spacing = <1-2 mm, grey-dark grey with orange iron staining.	-	-	Bentonite Bentonite Sand 1x uPVC 50 mm slotted screen
			6 — - - - - - - - - - -	<u>6.46</u> 7.00	C 6.25-7.00 m 6.65 m			-	SHALE; bedding dipping 0-5 degrees, <1-3 mm thick, average spacing = <1-10 mm, dark grey-grey.	_		
			- - - - - - - 9 - - - - - - - - -						Hole Terminated at 7.00 m Target depth reached. Borehole converted to monitoring well.			
			10—	I	This borehole	e log	shoul	d be	read in conjunction with Environmental Investigations Aust	alia's	acco	mpanying standard notes.

REPORT OF BOREHOLE: BH1/MW1/ASS1

CLIENT: Caliph PROJECT: Preliminary Geotechnical Investigation LOCATION: 75 Mary Street, St Peters, NSW JOB NO: E22317 EAST: 331111.478 m NORTH: 6246011.117 m MGA94 Zone 56 INCLINATION: -90° BOX: 1 of 1 HOLE DEPTH: 7.00 m DEPTH RANGE: 2.81 m to 7.00 m DRILL RIG: Multi-Drill 3000 DRILLER: Traccess Pty Ltd LOGGED: SK DATE: 24/9/2014 CHECKED: AM DATE: 9/10/2014

BOREHOLE: BH2/MW2/ASS2

Project Location Position Job No.

Client

New Mixed Development 75 Mary Street, St Peters NSW Refer to Figure 2 E22317 Caliph

331128.4 m 6245971.2 m Contractor Traccess Pty Ltd Drill Rig Multi-Drill 3000 Inclination -90°

East

North

Sheet Date Started Date Completed 23/9/14 Logged SK Checked AM

1 OF 2 23/9/14 Date: 23/9/14 Date: 9/10/14

		Dri	ling		Sampling				Field Material Desc				_
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
ТО	-		0	0.14			₽	-	FILL: CONCRETE; 140 mm.	-		CONCRETE HARDSTAND	
			-		BH2-1 ES 0.14-0.40 m		>>	-	FILL: Clayey SILT; high plasticity, dark grey, trace medium grained sand, with brick fragments, strong hydrocarbon odour.		-	FILL	
			-	0.50	PID = 0.1 ppm SPT 0.50 m		\sum_{x}	СН	Silty CLAY; high plasticity, dark grey with orange mottling,	-		RESIDUAL SOIL	+
			-		1,1,0 N=1				strong hydrocarbon odour.				
		25/09/14	1 —		ASS2-1 ES 0.50-0.95 m BH2-2		×			м	VS - S		
		25	_		PID = 1.1 ppm		X X						
	E	-	-		SPT 1.50 m		× ·						
			-	1.90	1,2,6 N=8 ASS2-2 ES		×						
5		GWNE	2—		1.50-1.95 m BH2-3			CI	CLAY; medium plasticity, orange with grey mottling, strong hydrocarbon odour.		F -		
AD/T		Ū	-		PID = 0.2 ppm					D	St		
			-										
			-	2.80				-	SHALE; red-brown, inferred extremely low strength, inferred			WEATHERED ROCK	+
	F		3-	3.15	SPT 3.00 m 21,30 HB				extremely weathered. From 3.15 m, as above, inferred very low strength, inferred			ROCK	_
			-		N=30/100mm ASS2-3 ES				distinctly weathered.				
			-		3.00-3.25 m BH2-4 PID = 1.1 ppm					-	-		
	Н		4										
			4	4.26	SPT 4.00 m 5 HB								
			-		N=5/50mm BH2-5				Continued as Cored Borehole				
			_										
			5										
			_										
			-										
			_										
			6 —										
			_										
			-										
			-										
			7—										
			-										
			-										
			_										
			8										
			_										
			-										
			_										
			9 —										
			-										
			-										
	L	I	10 —		This barshel			d bo	road in conjunction with Environmental Investigations Aveter	lio'o f			_
						6 100	j SriUuli	u ne	read in conjunction with Environmental Investigations Austra	110 5 6	aucoul	npanying stanualu notes.	
													_

E	nviro 1 v e	onm sti	enta gat	al ions								BOREHOLE: BH2/MW2	AS	S2	
Co	ntamina	tion	Remed	Au iation Ge	stralia eotechnical	Proje Loca Posit Job N Clien	tion 75 Mary Street, St Peters NSW ion Refer to Figure 2 Io. E22317	1)]	Drill			331128.4 mSheet6245971.2 mDate StartedTraccess Pty LtdDate CompletedMulti-Drill 3000Logged SK-90°Checked AM	2 OF 23/9/1 23/9/1 Date: Date:	14 14 23/9	
			Drilli	na			Field Material Description					Defect Information			—
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	ST Is	FERR RENG S ₍₅₀₎ MF	STH Pa	DEFECT DESCRIPTION & Additional Observations	DI	/ERAG EFEC PACIN (mm)	IG
EA LIB 103 GL Log IS AU CORED BOREHOLE 3 22317 GPJ <-Chawnpfile>> 09/10/2014 14;20 8,30.004 Datget Lab and in Situ Tool - DGD Lib: EA 1.03 2014-07-05 Py: EA 1.03 Py: EA 1	75-80% RETURN	92	28 (57) 90 (98)		4.26 4.52 6.04 6.25 7.02		Continuation from non-cored borehole SHALE; bedding dipping 0-5 degrees, pale grey. SHALE; bedding dipping 0-5 degrees, <1-3 mm	DW DW FR				4.49: BP 0° PR RF Fe SN 4.54: BP 0° PR RF Fe SN 4.53: BP 0° PR RF Fe SN 4.82: BP 5° PR RF Fe SN 4.82: AS: JT 20° PR RF Fe SN 4.82: 4.83: JT 20° PR RF Fe SN 4.82: 4.83: JT 20° PR RF Fe SN 5.41-5.38: CZ 170 mm, gravel, fine-coarse, angular 5.44-5.48: CS 40 mm, gravel, fine-coarse, angular 5.66: S.69: JT 45° PR RF Fe SN 5.77-5.82: JT 5 - 70° UN RF Fe SN 5.82: 5.84: JT 30 - 45° UN RF Fe SN 5.82: 5.84: JT 30 - 45° UN RF Fe SN 5.82: 5.84: JT 30 - 45° UN RF Fe SN 5.82: 5.84: JT 30 - 45° UN RF Fe SN 5.99: HB 6.00-6.04: CS 40 mm, gravel, coarse, subangular 6.37: 6.43: JT 40° PR RF Fe SN 6.51-6.56: CS 50 mm, gravel, medium-coarse, subangular 6.87: 6.70: DS 30 mm, clayey silt, high plasticity, soft.firm 6.74: BP 0 - 5° PR RF Fe SN 6.81: BP 0° PR FF FE			
EIA LIB															

Environmental Investigations Australia Contamination | Remediation | Ceotechnical

BOREHOLE: BH2/MW2/ASS2

Project Location Position Job No.

Client

New Mixed Development 75 Mary Street, St Peters NSW Refer to Figure 2 E22317 Caliph

East 331128.4 m North 6245971.2 m Contractor Traccess Pty Ltd Drill Rig Multi-Drill 3000 Inclination -90°

Sheet 1 OF 1 Date Started 23/9/14 Date Completed 23/9/14 Logged SK Date:23/9/14 Checked AM Date: 9/10/14

		Dri	lling		Sampling				Field Material Desc	riptio	on		
	z		_					Ы		Ī	C≺	PIEZOMETER DETA	ILS
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	MW2	
Ы	-		0-	0.14			P	-	FILL: CONCRETE; 140 mm.	-	-	Gati	c Cover crete
			_		BH2-1 ES 0.14-0.40 m PID = 0.1 ppm		\bigotimes	-	FILL: Clayey SILT; high plasticity, dark grey, trace medium grained sand, with brick fragments, strong hydrocarbon odour.		-		
			_	0.50	SPT 0.50 m			СН	Silty CLAY; high plasticity, dark grey with orange mottling, strong	-			
			-	-	1,1,0 N=1		×		hydrocarbon odour.				
		25/09/14	1 —		ASS2-1 ES 0.50-0.95 m					м	VS - S		
		25/	-		BH2-2 PID = 1.1 ppm		× – ×						
	E	–	-		SPT 1.50 m		x						
			_	1.00	1,2,6 N=8								
		Щ	2 —	1.90	ASS2-2 ES 1.50-1.95 m			CI	CLAY; medium plasticity, orange with grey mottling, strong		1		
AD/T		GWNE	-	-	BH2-3 PID = 0.2 ppm				hydrocarbon odour.		F - St		
			-							D			
			-	2.80								- Ben	tonite
	F]	3-					-	SHALE; red-brown, inferred extremely low strength, inferred extremely weathered.				PVC 50 m
			-	3.15	SPT 3.00 m 21,30 HB				From 3.15 m, as above, inferred very low strength, inferred	+		casi	
			-	-	N=30/100mm ASS2-3 ES 3.00-3.25 m				distinctly weathered.				
	н		-		BH2-4 PID = 1.1 ppm					-	-		
			-		1 D – 1.1 ppm								
			4	4.26	SPT 4.00 m 5 HB								
			-	4.52	N=5/50mm BH2-5				SHALE; bedding dipping 0-5 degrees, pale grey.				
			-	1.02	C 4.26-7.00 m				SHALE; bedding dipping 0-5 degrees, <1-3 mm thick, average spacing = 2-3 mm, grey with orange iron staining.	1			
			-						spacing - 2-5 mm, grey with orange non-staining.				
			5		5.00 m								
			-	-									
			-	-									
			-										
			6 —	6.04 6.25			\square		CORE LOSS; 210 mm.	1			
		RETURN	_	0.20					SHALE; bedding dipping 0-5 degrees, <1-3 mm thick, average	1			
NMLC	-	RET	-	-					spacing = 2-3 mm, grey with orange iron staining.	-	-		
Ξ		75-80%	-										
		75	7 —	7.02	C 7.00-9.00 m	-			SHALE; bedding dipping 0-5 degrees, <1-3 mm thick, average	-		San	н
			-		7.00 m				spacing = 2-3 mm, dark grey-grey.				
			-										PVC 50 m ed screen
			-		7.82 m								
			8 —										
			-										
			-										
			-				E						
_			9	9.00			\square		Hole Terminated at 9.00 m	-	-		
			-						Target depth reached. Borehole converted to monitoring well.				
			-										
			-										
			10 —								1		
					This borehole	e log	g shoul	d be	read in conjunction with Environmental Investigations Austr	alia's	acco	mpanying standard notes.	

REPORT OF BOREHOLE: BH2/MW2/ASS2

CLIENT: Caliph PROJECT: Preliminary Geotechnical Investigation LOCATION: 75 Mary Street, St Peters, NSW JOB NO: E22317 EAST: 331128.376 m NORTH: 6245971.168 m MGA94 Zone 56 INCLINATION: -90° BOX: 1 of 1 HOLE DEPTH: 9.00 m DEPTH RANGE: 4.26 m to 9.00 m DRILL RIG: Multi-Drill 3000 DRILLER: Traccess Pty Ltd LOGGED: SK DATE: 23/9/2014 CHECKED: AM DATE: 9/10/2014

BOREHOLE: BH3/MW3/ASS3

Project Location Position Job No.

Client

New Mixed Development 75 Mary Street, St Peters NSW Refer to Figure 2 E22317 Caliph

331107.4 m 6245935.7 m Contractor Traccess Pty Ltd Drill Rig Multi-Drill 3000 Inclination -90°

East

North

Sheet 1 OF 2 Date Started 25/9/14 Date Completed 25/9/14 Logged SK Date: 25/9/14 Checked AM Date: 9/10/14

	_	Dri	ling		Sampling				Field Material Desc	riptic	on		_
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
DΤ	-		0 —	0.15			. <i>p</i> L	-	FILL: CONCRETE; 150 mm.	-		CONCRETE HARDSTAND	Т
			-	0.40	BH3-1 ES 0.20-0.40 m		\bigotimes	-	FILL: CLAY; high plasticity, grey-brown, with brick fragments, strong hydrocarbon odour.	м	-	FILL	
			-		PID = 12 ppm ASS3-1 ES			СН	CLAY; high plasticity, grey with red mottling, mild hydrocarbon			RESIDUAL SOIL	Γ
			-		0.40-0.50 m SPT 0.50 m				odour.				
	E		1 —		2,3,6 N=9						St		-
			-		BH3-2 PID = 0.8 ppm					D			.
		Щ	-		SPT 1.50 m								•
АD/Т		GWNE	_		7,7,10 N=17						VSt		
			2—	2.00	ASS3-2 BH3-3			-	CUALE, grouwith groups iron staining informed automoly law.			WEATHERED ROCK	+
	F		-		PID = 3.6 ppm			-	SHALE; grey with orange iron staining, inferred extremely low strength, inferred extremely weathered.				.
			-	2.50						-		ROCK	Ŀ
			_						From 2.5 m, as above, inferred very low strength, inferred distinctly weathered	-	-		
	н		3-		SPT 3.00 m								_
			-	3.27	25 HB N=25/150mm								
			-		BH3-4 PID = 0.5 ppm				Continued as Cored Borehole				-
			-		··· ·· ·· ··	1							-
			4-										
													-
			-										-
en-/n-			-										-
13 2014			5										-
EIA T													
1-1 an-7 f			-										-
5111 1001 - UGU LIB: EIA 1.03 2014-01-05 M]; EIA 1.03 2014-01-05			-										-
EIA 1.0			-										-
			6										
- 100			-										.
			-										.
ao aud IL			_										•
Jargel L			7—										-
10.004			-										
09/10/2014 14:27 8:30,004 Dargei Lao			-										
zl. 41.07			-										
01/80			8 —										-
1gr IIe>>													
umbiu~~			-										
			-										
E2231			9 —										-
IS AU BUREHULE 3 EZ3TI.GPJ			-										
BUKE			-										
04.01			-										
1.U.3.GLB L00			10—		This borehol	e log	shoul	d be	read in conjunction with Environmental Investigations Austra	lia's a	accon	npanying standard notes.	1

		\wedge		Au	stralia extechnical	Proje Loca Posit Job I Clier	tion 75 Mary Street, St Peters NSW tion Refer to Figure 2 No. E22317	N C	Drill				331107.4 m 6245935.7 m Traccess Pty Ltd Multi-Drill 3000 -90°	Sheet Date Started Date Completed Logged SK Checked AM	2 C 25/9 25/9 Dat	DF 2 9/14 9/14 e: 9	2
			Drilli	ng			Field Material Description	ŋ	IN	FER	RE	D	Defe	ect Information	A	AVE	RAC
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	ls	REN 3 ₍₅₀₎ 1 5 8 - 2	MPa	a	& Additional Obs			SPA (n	EC CIN nm)
NMLC	85-90% RETURN	100	20 (47) 12 (31)		<i>3.27</i> <i>4.56</i>		Continuation from non-cored borehole SHALE; bedding dipping 5-10 degrees, pale grey-grey with medium to high strength ironstone bands up to 60 mm thick. SHALE; bedding dipping 5-10 degrees, <1-2 mm thick, average spacing = 1-3 mm, grey-dark grey with orange iron staining. Hole Terminated at 6.52 m Target depth reached. Borehole converted to monitoring well.	Dw					3.29: DB 3.37-3.39: DS 20 mm, sandy silt, sand is fine grained 3.43-3.44: DS 10 mm, silt, high pl 3.49-3.43: DS 40 mm, silt, high pl 3.49-3.53: DS 40 mm, silt, high pl 3.75-3.82: CS 70 mm, gravel, fine 3.89-3.95: DS 60 mm, silt, high pl 4.11: BP 5° PR RF Fe SN 4.46-4.48: DS 20 mm, silt, high pl 4.47: BP 5° PR RF Fe SN 4.46-4.48: DS 20 mm, silt, high pl 4.75: AP 5° PR RF Fe SN 4.95: JT 0 - 20° CU RF Fe SN 5.04-5.08: DS 40 mm, silt, high pl 5.11: BP 0° PR RF Fe SN 5.13-5.18: DS 50 mm, gravel, fine 5.24-5.22: DS 10 mm, silt, high pl 5.24-5.22: DS 10 mm, gravel, fine 5.24-5.22: DS 10 mm, gravel, fine 5.25: DS 10 mm, gravel, fine 5.26: JP 10° PR RF Fe SN 5.73-5.75: DS 20 mm, gravel, fine 5.26: JT 20 - 90° UN RF Fe SN 5.73-5.75: DS 20 mm, gravel, coa 6.10-6.26: JT 20 - 90° UN RF Fe SN 6.11-6. If JT 80° PR RF Fe SN 6.13-6.52: HB	asticity, soft asticity, soft 2 SN avg sp = 5-30 mm asticity, soft asticity, soft			

Environmental Investigations Australia Contamination | Remediation | Geotechnical

BOREHOLE: BH3/MW3/ASS3

Project Location Position Job No.

Client

New Mixed Development 75 Mary Street, St Peters NSW Refer to Figure 2 E22317 Caliph

331107.4 m North 6245935.7 m Contractor Traccess Pty Ltd Drill Rig Multi-Drill 3000 Inclination -90°

East

Sheet 1 OF 1 Date Started 25/9/14 Date Completed 25/9/14 Logged SK Date: 25/9/14 Checked AM Date: 9/10/14

AD/T DT METHOD	H PENEITATION	GWNE WATER	DEPTH (metres) 	DEPTH RL 0.15 0.40	BH3-1 ES 0.20-0.40 m PID = 12 ppm	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	ISTENCY ITY	PIEZOMETER DETAII	LS
DT	E		0 — - - -	RL 0.15	BH3-1 ES 0.20-0.40 m PID = 12 ppm	RECO	GRAP LOG	SC				PIEZOMETER DETAILS	
	E	NE	-		PID = 12 ppm			NSU		MOIS		MW3	
AD/T		NE	- - 1—	0.40	PID = 12 ppm			-	FILL: CONCRETE; 150 mm.	-		Gatic	cover crete
AD/T		NE	- - 1				\bigotimes	-	FILL: CLAY; high plasticity, grey-brown, with brick fragments, strong hydrocarbon odour.	М			
AD/T		NE	- 1 —		ASS3-1 ES 0.40-0.50 m			СН	CLAY; high plasticity, grey with red mottling, mild hydrocarbon odour.				
AD/T		NE	1 —	_	SPT 0.50 m 2,3,6				oddur.				
AD/T		NE			N=9 BH3-2						St		
AD/T	F	ЫE	-		PID = 0.8 ppm					D			
AD/T	F	۳,	-										
- AI	F	≤	-		SPT 1.50 m 7,7,10							- Bento	
ŀ	F	0	-	2.00	N=17 ASS3-2						VSt	 2x uF casin 	PVC 50 mm Ig
	F		2—	2.00	BH3-3 PID = 3.6 ppm			-	SHALE; grey with orange iron staining, inferred extremely low				
	·		-						strength, inferred extremely weathered.				
ŀ	_		_	2.50					From 2.5 m, as above, inferred very low strength, inferred	-			
			_						distinctly weathered	-	-		
	н		3 —							1			
			-	3.27	SPT 3.00 m 25 HB								
			-		N=25/150mm BH3-4				SHALE; bedding dipping 5-10 degrees, pale grey-grey with				
		SN	-	-	PID = 0.5 ppm C 3.27-4.79 m				orange iron staining.				
			-										
			4 —		4.30 m								
			-										
			-	4.56									
0		85-90% RETURN							SHALE; bedding dipping 5-10 degrees, <1-2 mm thick, average spacing = 1-3 mm, grey-dark grey with orange iron staining.			Sand	1
NMLC	-	% RE	5 —		C 4.79-6.52 m					-	-		PVC 50 mm
-		2-90	-										ed screen
		∞	-		5.40 m								
			-		5.40 m								
			-										
			6 —										
			-										
\rightarrow				6.52					Hole Terminated at 6.52 m	-			
			_						Target depth reached. Borehole converted to monitoring well.				
			7 —						biendle converted to monitoring weil.				
			-										
			-										
			-										
			-										
			8 —										
			-										
			-										
			-										
			9 —										
			-										
			-										
			-										
			-										
			10 —	I	This baset - !-			dha		olic's		manuing atopdard rates	
					I HIS DOREHOLE	e iog	j snoul	u pe	read in conjunction with Environmental Investigations Austr	alla's	acco	mpanying standard notes.	

REPORT OF BOREHOLE: BH3/MW3/ASS3

CLIENT: Caliph PROJECT: Preliminary Geotechnical Investigation LOCATION: 75 Mary Street, St Peters, NSW JOB NO: E22317 EAST: 331107.430 m NORTH: 6245935.749 m MGA94 Zone 56 INCLINATION: -90° BOX: 1 of 1 HOLE DEPTH: 6.52 m DEPTH RANGE: 3.27 m to 6.52 m DRILL RIG: Multi-Drill 3000 DRILLER: Traccess Pty Ltd LOGGED: SK DATE: 25/9/2014 CHECKED: AM DATE: 9/10/2014

		\wedge		ONS Austr on Geotec	alia Project	75 M	ary Str r to Fig 17	reet,	2	East North Contractor Drill Rig Inclination	BOREH 331071.8 m 6245975.2 m Traccess Pty L ² Multi-Drill 3000 -90°	td	LE	Sheet 1 OF 2 Date Started 24/9/14 Date Completed 24/9/14 Logged SK Date: 24/9/14 Checked AM Date: 9/10/14				
		-	ling	1	Sampling					Fiel	d Material Desci							
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATER	RIAL DESCRI	IPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS				
		Δ	0	0.30				<u> -</u>	FILL: ASPHALT; 30 mm.		lar gravel	<u> </u>	-	ROAD SURFACE				
	E	25/09/14	- - 1 - - -	<u></u>	BH4-1 ES 0.30-0.40 m PID = 11 ppm SPT 0.50 m 1.2.3 N=5 BH4-2 PID = 180 ppm ASS4-1 ES 1.00-1.20 m SPT 1.50 m 2.2.6 N=8 BH4-3			CH	FILL: Silty GRAVEL; medium to inferred road base material, mil Silty CLAY; high plasticity, grey medium, subrounded ironstone hydrocarbon odour.				F	RESIDUAL SOIL				
			2	-	PID = 122 ppm								St					
AD/T	F	-	-	2.50	ASS4-2 ES 2.50-2.70 m		×	-	SHALE; grey with orange iron s strength, inferred extremely weat odour.	taining, inferre athered, mild h	ed extremely low hydrocarbon	w		WEATHERED ROCK				
		-	3—	3.00	SPT 3.00 m				From 3.0 m, as above, inferred	verv low stren		-		ROCK				
	н		- - - 4		30 HB N=30/150mm BH4-4 PID = 14 ppm				distinctly weathered, no odour.		gui, increa		-					
03 2014-07-05			-	4.90	ASS4-3 ES 4.30-4.50 m SPT 4.50 m 11,19 HB N=19/150mm													
			5— - -		BH4-5 PID = 3.2 ppm				Continued as Cored Borehole									
20 LID: EIA 1.03 201			6															
and In Situ Tool - Do			-															
.30.004 Datgel Lab			7															
< <uramingh lie="">></uramingh>			-															
LE 3 E22317.GPJ			- 9—															
OG IS AU BUREHO			-															
			10—		This boreh	nole log	, g shoul	d be	read in conjunction with Enviro	nmental Inve	stigations Austra	lia's a	accon	npanying standard notes.				
lln	ve	sti		tions	stralia	Proje Loca Posit Job I Clien	ation75 Mary Street, St Peters NSWtionRefer to Figure 2No.E22317		Drill F	n racto	or	BOREHOLE: 331071.8 m 6245975.2 m Traccess Pty Ltd Multi-Drill 3000 -90°		Sheet Date Started Date Completed Logged SK Checked AM	2 C 24/9 24/9 Date	9F 2 9/14 9/14 e: 9/	4 10/14 10/14	
-----------	---------------	-----	--------------------------	-------------------	-------------	--	--	------------	-----------	------------------------	------------	---	---	---	-----------------------------	-------------------------------	----------------------------	---
			Drilli	na			Field Material Description							nformation				-
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STI Is	=ERF REN((50) M	GT⊢ IPa	DEFECT DE: & Additional C	SCRIP	TION	5	DEFI SPAC (mi	CING	
NMLC NMLC	75-80% RETURN	100	11 (39) 13 (47)		4.90		Continuation from non-cored borehole SHALE;bedding dipping 0-5 degrees, <1-3 mm thick, average spacing = 2-3 mm, dark grey-grey with orange iron staining. SHALE; bedding dipping 0-5 degrees, <1-1 mm thick, average spacing = <1-3 mm, dark grey-grey with brown iron staining. Hole Terminated at 7.96 m Target depth reached. Borehole converted to monitoring well.	SW				4.93: BP 0 - 5° UN RF Fe SN 4.95: BP 0° PR RF Fe SN 5.03-5.04: BPx2 0° PR RF Fe SN 5.03-5.04: BPx2 0° PR RF Fe SN 5.03-5.04: BPx2 0° PR RF Fe SN 5.10: DB 5.22: BP 0° PR RF Fe SN 5.26-5.32: JT 60 - 90° CU RF 5.29: BP 0 - 5° UN RF Fe SN 5.38-5.90 SN 10 mm, gravel, 5.38-5.50 SN 10 mm, gravel, 5.34-5.66: JT 30° PR RF Fe SN 5.34-5.66: JT 30° PR RF Fe SN 5.34-5.66: JT 30° PR RF Fe SN 5.34-5.66: JT 30° PR RF Fe SN 6.36: BP 0° PR RF Fe SN 6.39: 6.45: DB 6.45-6.55: DB 6.45-6.55: DB 6.45-6.55: DB 6.45-6.55: DB 6.45-6.57: UN RF Fe SN 6.51: JT 15° UN RF Fe SN 6.61: JT 15° UN RF Fe SN 7.00-7.06: JT 45 - 80° UN RF 7.64: JZ 0° PR RF Fe SN 7.04: JZ 0° PR RF Fe SN 7.84: DB	Fe SN Fe SN a fine-me el N N fine-me f Fe SN F Fe SN Fe SN	diùm, subrounded ity, soft, trace dium, subrounded I avg sp = 10-20 mm subangular I avg sp = 10-100 n-coarse, angular				
																		_

REPORT OF BOREHOLE: BH4/MW4/ASS4

CLIENT: Caliph PROJECT: Preliminary Geotechnical Investigation LOCATION: 75 Mary Street, St Peters, NSW JOB NO: E22317 EAST: 331071.812 m NORTH: 6245975.180 m MGA94 Zone 56 INCLINATION: -90° BOX: 1 of 1 HOLE DEPTH: 7.96 m DEPTH RANGE: 4.90m to 7.96 m DRILL RIG: Multi-Drill 3000 DRILLER: Traccess Pty Ltd LOGGED: SK DATE: 24/9/2014 CHECKED: AM DATE: 9/10/2014

BOREHOLE: BH5/MW5/ASS5

New Mixed Development 75 Mary Street, St Peters NSW Location Position Refer to Figure 2 Job No. E22317 Client Caliph

331192.6 m 6245953.9 m Contractor Traccess Pty Ltd Drill Rig Multi-Drill 3000 Inclination -90°

East

North

Sheet Date Started Date Completed 23/9/14 Logged SK Checked AM

1 OF 2 23/9/14 Date: 23/9/14 Date: 9/10/14

		Dri	ling		Sampling				Inclination -90° Checked Aivi Date:							
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS				
			0	0.30			\bigotimes	-	FILL: gravelly SAND; fine to medium grained, brown, gravel is fine to coarse, subangular, strong hydrocarbon odour.			ROAD SURFACE				
		25/09/14	-	0.50	BH5-1 ES 0.20-0.30 m PID = 80 ppm BH5-2 D 0.30-0.40 m PID = 52 ppm		\bigotimes	-	FILL; Sandy CLAY; high plasticity, brown, sand is fine to medium grained. trace fine to medium, subrounded gravel.	D	-	FILL				
		25/0	-	0.70	BH5-2 D 0.30-0.40 m PID = 52 ppm ASS5-1 ES 0.40-0.50 m			СН	with brick fragments, mild hydrocarbon odour. CLAY; high plasticity, grey mottled red, trace fine to medium, subrounded ironstone gravel, trace rootlets, mild hydrocarbon			RESIDUAL SOIL				
	Е		1		SPT 0.50 m 2,2,2 N=4				odour.		F					
			-		BH5-3 PID = 89 ppm											
			-		SPT 1.50 m 3,5,8 N=13						St					
		GWNE	2—		ASS5-2 ES 1.50-1.95 m BH5-4						51					
		0	-	2.30	PID = 138 ppm			-	MUDSTONE; pale brown-orange, inferred extremely low strength, inferred extremely weathered, no odour.	 (<pl< td=""><td>, —</td><td>WEATHERED ROCK</td><td></td></pl<>	, —	WEATHERED ROCK				
	F		-													
			3—	3.00	SPT 3.00 m				From 3.0 m, as above, inferred very low strength, inferred	-		ROCK				
			-		13,25,5 HB N=30/160mm BH5-5				extremely weathered.		-					
	н		-		PID = 4.1 ppm											
			4 —	4.00	SPT 4.00 m											
			_	4.20	4 HB N=4/50mm BH5-6				Continued as Cored Borehole							
			-			1										
			5													
			-													
			-													
			6													
			-													
			-													
			-													
			7—													
			-													
			-													
			8													
			-													
			-													
			9 —													
			-													
			-													
									read in conjunction with Environmental Investigations Austra	liolo						
							,									

	Drilling						Proje Loca Posit Job N Clien	tion 75 Mary Street, St Peters NSW ion Refer to Figure 2 Io. E22317				or	BOREHOLE: 1 331192.6 m 6245953.9 m Traccess Pty Ltd Multi-Drill 3000 -90°	BH5/MW5/ Sheet Date Started Date Completed Logged SK Checked AM	2 O 23/9 23/9 Date	F 2 /14	
	_	_	_	Drilli	ng			Field Material Description	_				Defe	ect Information			
METUOD	WATER		TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	ST Is	REN 3 ₍₅₀₎ N	GTH	& Additional Obs		S	VERAGE DEFECT SPACING (mm)	i
	R0.86% RFTIPN	1		56 (63) 31 (58) 46 (51)		4.20 4.66 6.00 6.29		Continuation from non-cored borehole MUDSTONE; bedding dipping 0-5 degrees, pale grey-pale brown. CORE LOSS; 100 mm. MUDSTONE; bedding dipping 0-5 degrees, pale grey-pale brown. From 6.0 m, as above, pale grey-pale brown with orange iron staining. SHALE; bedding dipping 0-10 degrees, <1-3 mm thick, average spacing = <1-3 mm, dark grey-grey with orange iron staining. SHALE; bedding dipping 0-10 degrees, <1-3 mm thick, average spacing = <1-3 mm, dark grey-grey with orange iron staining. Hole Terminated at 8.66 m Target depth reached. Borehole converted to monitoring well. s borehole log should be read in conjunction with E					4.30-4.50: BPX5 0 - 5° PR S Fe mm 4.60-4.66: DS 60 mm, silt, high 5.10-5.30: JT 50° PR S Fe SN 5.21: BP 0° PR S Fe SN 5.26: JT 10° ST RF Fe SN 5.64: JT 10° ST RF Fe SN 5.64: JT 10° ST RF Fe SN 6.16: BP 0° PR RF Fe SN 6.16: BP 0° PR RF Fe SN 6.16: BP 0° PR RF Fe SN 6.27: BP 0° PR RF Fe SN 6.26-6.31: CS 40 mm, gravel, fi 6.39-6.47: DS 80 mm, silt, high 6.53: HB 6.59: JT 20° ST RF Fe SN 6.29-6.33: CS 40 mm, gravel, fi 6.39-6.47: DS 80 mm, silt, high 6.53: HB 6.59: JT 20° ST RF Fe SN 7.11-7.22: BPX3 0 - 5° PR RF C 7.35-7.37: JT 50° PR RF CN 7.37-7.60: JT 85° PR RF CN 7.37-7.60: JT 85° PR RF CN 7.37-7.60: JT 85° PR RF CN 7.47-7.86: BPX8 0 - 5° PR RF C 7.37-7.75: CS 20 mm, gravel, fit 7.76: BP 0° PR RF Fe SN 8.10-8.20: JT 45 - 90° CU RF C 8.22-8.40: JT 45 - 80° CU RF C 8.22-8.40: JT 45 - 80° CU RF C 8.42: DB 8.47: BP 10° PR RF CN 8.42: DB 8.47: BP 10° PR RF CN	plasticity, soft l avg sp = 50 mm coarse, ne-medium, subrounded plasticity, soft plasticity, firm, trace N avg sp = 10-100 mm N N N			
							Thi	s borehole log should be read in conjunction with E	nviror	nme	ntal I	inves	stigations Australia's accompan	ying standard notes.			

Environmental Investigations Australia Contamination | Remediation | Ceotechnical Project New Mixed Development

BOREHOLE: BH5/MW5/ASS5

Location Position Job No. Client

75 Mary Street, St Peters NSW Refer to Figure 2 E22317 Caliph

331192.6 m North 6245953.9 m Contractor Traccess Pty Ltd Drill Rig Multi-Drill 3000 Inclination -90°

East

Sheet 1 OF 1 Date Started 23/9/14 Date Completed 23/9/14 Logged SK Date: 23/9/14 Checked AM Date: 9/10/14

		Dri	lling		Sampling	Field Material Desc									
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	PIEZOMETER DETAILS			
		/14	0	0.30	BH5-1 ES 0.20-0.30 m PID = 80 ppm BH5-2 D 0.30-0.40 m		×	-	FILL: gravelly SAND; fine to medium grained, brown, gravel is fine to coarse, subangular, strong hydrocarbon odour. FILL; Sandy CLAY; high plasticity, brown, sand is fine to medium grained, trace fine to medium, subrounded gravel, with brick	D	-	Gatic Cover			
	E	25/09/14	- - 1 -	0.70	PID = 52 ppm ASS5-1 ES 0.40-0.50 m SPT 0.50 m 2,2,2 N=4 BH5-3 PID = 89 ppm			СН	CLAY; high plasticity, grey mottled red, trace fine to medium, subrounded ironstone gravel, trace rootlets, mild hydrocarbon odour.		F				
AU/I		GWNE	- 2 -	2.30	SPT 1.50 m 3,5,8 N=13 ASS5-2 ES 1.50-1.95 m BH5-4 PID = 138 ppm			-	MUDSTONE; pale brown-orange, inferred extremely low strength,	м	St				
	F	-	- - 3—	3.00	SPT 3.00 m				inferred extremely weathered, no odour.	(<pl< td=""><td>)</td><td> Bentonite 2x uPVC 50 m casing </td></pl<>)	 Bentonite 2x uPVC 50 m casing 			
	н		- - - 4		13,25,5 HB N=30/160mm BH5-5 PID = 4.1 ppm				From 3.0 m, as above, inferred very low strength, inferred extremely weathered.		-				
				4.20	SPT 4.00 m 4 HB N=4/50mm BH5-6 C 4.20-6.00 m				MUDSTONE; bedding dipping 0-5 degrees, pale grey-pale brown. CORE LOSS; 100 mm. MUDSTONE; bedding dipping 0-5 degrees, pale grey-pale						
			5 — - -		5.45 m				brown.						
NMLC	-	35% RETURN	6 — - -	6.00 6.29	C 6.00-6.80 m				From 6.0 m, as above, pale grey-pale brown with orange iron staining. SHALE; bedding dipping 0-10 degrees, <1-3 mm thick, average spacing = <1-3 mm, dark grey-grey with orange iron staining.	-	-				
		80-8	- 7 -	-	C 6.80-8.66 m 6.89 m							Sand 1x uPVC 50 m slotted screen			
			- 8 - -	8.66	7.86 m										
			9— 	-					Hole Terminated at 8.66 m Target depth reached. Borehole converted to monitoring well.						
			10-		This borehole	e lo	g shoul	d be	read in conjunction with Environmental Investigations Austr	alia's	acco	mpanying standard notes.			

REPORT OF BOREHOLE: BH5/MW5/ASS5

CLIENT: Caliph PROJECT: Preliminary Geotechnical Investigation LOCATION: 75 Mary Street, St Peters, NSW JOB NO: E22317 EAST: 331192.569 m NORTH: 6245953.870 m MGA94 Zone 56 INCLINATION: -90° BOX: 1 of 1 HOLE DEPTH: 8.66 m DEPTH RANGE: 4.20 m to 8.66 m DRILL RIG: Multi-Drill 3000 DRILLER: Traccess Pty Ltd LOGGED: SK DATE: 23/9/2014 CHECKED: AM DATE: 9/10/2014-

BOREHOLE: BH6

Job No.

Client

New Mixed Development 75 Mary Street, St Peters NSW Refer to Figure 2 E22317 Caliph

331100.0 m 6245974.3 m Contractor Traccess Pty Ltd Drill Rig Multi-Drill 3000 Inclination -90°

East

North

Sheet 1 OF 2 Date Started 25/9/14 Date Completed 25/9/14 Logged SK Date: 25/9/14 Checked AM Date: 9/10/14

F	Drilling				Sampling		Field Material Description										
METHOD	PENETRATION	_		DEPTH		RECOVERED	GRAPHIC LOG	USCS SYMBOL			CONSISTENCY : DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS					
DT		ž Š	 	0.19		RE	C GF	SN -	FILL: CONCRETE; 190 mm.	≚ö	ŏă	CONCRETE HARDSTAND					
	E		1-	0.40	BH6-1 ES 0.20-0.40 m PID = 0.2 ppm SPT 0.50 m 1,2,3 N=5 BH6-2 PID = 0.5 ppm			- CH	FILL: Gravelly CLAY; medium plasticity, brown-dark brown, gravel is fine to medium, subangular, with brick fragments, no odour.	D	F	FILL RESIDUAL SOIL					
		GWNE		1.80	SPT 1.50 m 3,3,8 N=11						St						
AD/T	F		2-		BH6-3 PID = 0.4 ppm			-	SHALE; red-grey with orange iron staining, inferred extremely low strength, inferred extremely weathered, no odour.	-	-	WEATHERED ROCK -					
		1	3-	3.00 3.30	SPT 3.00 m 10 HB N=10/20mm				From 3.0 m, as above, inferred very low strength, inferred distinctly weathered.			ROCK					
	н			3.64	BH6-4 SPT 3.30 m 5 HB N=5/40mm				From 3.3 m, as above, pale grey.								
GLB LOG IS AU BOREHOLE 3 E2317.GPJ < <drawingfile> 08/10/2014 14/21 8.30.004 Daiget Lab and in Situ Tool - DGD LB: El A 1.03 2014-07.05 Prj: El A 1.03 2014-07.05</drawingfile>					ВН6-5												
LIB 1.03.GLB Log			┙ 10ー		This borehole	e log	shoul	d be	read in conjunction with Environmental Investigations Austra	lia's a	accon	npanying standard notes.					
EIA																	

Australia Project Contamination Remediation Geotechnical Location Positio Job No Client Drilling	on 75 Mary Street, St Peters NSW on Refer to Figure 2 o. E22317	East North Contractor Drill Rig Inclination	331100.0 m 6245974.3 m Traccess Pty Ltd Multi-Drill 3000 -90°	Sheet Date Started Date Completed Logged SK	BH6 2 OF 2 25/9/14 25/9/14 Date: 9/10/14 Date: 9/10/14
METHOD MATER TCR TCR TCR MATER MATER MATER MATER MATER MATER MATER MATER MATER	ROCK / SOIL MATERIAL DESCRIPTION	INFERRED STRENGTH Is ₍₅₀₎ MPa	DEFECT DESCRIP & Additional Observa	TION	AVERAGE DEFECT SPACING (mm)
	Continuation from non-cored borehole SHALE; bedding dipping 0-10 degrees, <1-1 mm thick, pale grey-grey with medium to high strength ironstone bands up to 20 mm thick. CORE LOSS; 50 mm. SHALE; bedding dipping 0-10 degrees, <1-1 mm thick, pale grey-grey with medium to high strength ironstone bands up to 80 mm thick. SHALE; bedding dipping 0-10 degrees, <1-1 mm thick, average spacing = 1-3 mm, dark grey-grey with orange iron staining. SHALE; bedding dipping 0-10 degrees, <1-2 mm thick, average spacing = <1-3 mm, dark grey-grey. Hole Terminated at 7.73 m Target depth reached. Backfilled with drilling spoil. Concrete capped. bedrifted with drilling spoil. Concrete capped.	DW DW DW DW FR FR	3.64-3.74: DB 3.86-4.84: BPx10 0 - 10° PR RF Fe SI mm 4.22-4.25: CS 30 mm, gravel, fine-coa 4.37-4.41: HB 4.48: JT 15° PR RF Fe SN 4.52: JT 0 - 90° ST RF Fe SN 4.56-4.64: DS 80 mm, silt, high plastic 4.66: JT 20° PR RF Fe SN 4.70: JT 0 - 40° UN RF Fe SN 4.72-4.77: DS 50 mm, silt, high plastic 5.14-6.29: BPx12 0 - 10° PR RF Fe SI 5.27-5.44: DS 70 mm, silt, high plastic 5.14-6.29: BPx12 0 - 10° PR RF Fe SN 5.66: JT 30° closed 5.71: JT 10° PR RF Fe SN 5.76: JT 30° closed 5.71: JT 10° PR RF Fe SN 5.76: JT 30° CU RF Fe SN 5.76: JT 30° PR RF Fe SN 5.76: JT 30° PR RF Fe SN 5.76: JT 30° PR RF Fe SN 6.22-6.24: JT 5 - 30° CU RF Fe SN 6.32-6.40: CS 70 mm, gravel, fine-coa angular-subangular 6.42: JT 20° JN RF Fe SN 6.42: JT 20° PR RF CN 6.75-6.78: JT 30° PR RF CN 6.89-6.91: CS 20 mm, gravel, fine-coa angular-subangular 6.61: JT 20° PR RF CN 6.89-6.91: CS 20 mm, gravel, fine-coa angular-subangular 7.06: JT 0 - 20° UN RF CN 7.42-7.54: CJ 20° PR RF CN 7.42-7.54: CJ 20° MM, gravel, fine-coa angular-subangular 7.54-7.60: DB	arse, angular arse, angular arse, stiff bity, stiff N avg sp = 30-100 bity, stiff arse, arse, g sp = 30-100 mm arse, barse, barse,	

REPORT OF BOREHOLE: BH6

CLIENT: Caliph PROJECT: Preliminary Geotechnical Investigation LOCATION: 75 Mary Street, St Peters, NSW JOB NO: E22317 EAST: 331100.047 m NORTH: 6245974.262 m MGA94 Zone 56 INCLINATION: -90° BOX: 1 of 1 HOLE DEPTH: 7.73 m DEPTH RANGE: 3.64 m to 7.73 m DRILL RIG: Multi-Drill 3000 DRILLER: Traccess Pty Ltd LOGGED: SK DATE: 25/9/2014 CHECKED: AM DATE: 9/10/2014

EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT LOGS

Contamination Remediation Geotec	inical					
DRILLING/EXCAVATIO	N METHOD					
HA Hand Auger	•	RD	Rotary blade	or drag bit	NQ	Diamond Core - 47 mm
DTC Diatube Cor	ing	RT	Rotary Tricon	e bit	NMLC	
NDD Non-destruc	tive digging	RAB	Rotary Air Bla	st	HQ	Diamond Core - 63 mm
AS* Auger Screw	wing	RC	Reverse Circu	ulation	HMLC	Diamond Core - 63mm
AD* Auger Drillin	ıg	PT	Push Tube		BH	Tractor Mounted Backhoe
*V V-Bit		СТ	Cable Tool Ri	g	EX	Tracked Hydraulic Excavator
*T TC-Bit, e.g.	ADT	JET	Jetting		EE	Existing Excavation
ADH Hollow Auge	er	WB	Washbore or	Bailer	HANE	D Excavated by Hand Methods
PENETRATION/EXCAV	ATION RESISTA	NCE				
	Denid nenetnetien	/				at ward
	. Rapid penetration					
			•	•		lerate effort from equipment used.
H High resistance	Penetration/ exca	vation is p	ossible but at a	slow rate and	requires si	gnificant effort from equipment used.
R Refusal/ Practic	al Refusal. No fu	rther prog	ress possible wi	thout risk of da	amage or u	nacceptable wear to equipment used.
These assessments are sub	jective and are dep	endent on	many factors, i	ncluding equip	ment powe	er and weight, condition of
excavation or drilling tools a				0 1 1	•	
WATER		b - · ·		~		inten lana
¥	Water level at date	e snown		\triangleleft	Partial w	vater loss
\triangleright	Water inflow				Complet	te water loss
GROUNDWATER NOT OBSERVED	Observation of gr or cave-in of the t			ent or not, was	s not possi	ble due to drilling water, surface seepage
GROUNDWATER NOT ENCOUNTERED						ater could be present in less permeable een left open for a longer period.
SAMPLING AND TESTI	NG					
seating 30/80mm RW HW BB Sampling DS BDS GS WS	Where practical r Penetration occu Penetration occu Hammer double Disturbed Sample Bulk disturbed Sa Gas Sample Water Sample	rred under rred under bouncing o e	r the rod weight the hammer ar	only		iterval are reported
U63	Thin walled tube	sample - r	number indicate	s nominal sam	ple diame	ter in millimetres
Testing FP FVS PID PM PP WPT DCP CPT CPTu	Field Permeabilit Field Vane Shea Photoionisation I Pressuremeter te Pocket Penetrom Water Pressure t Dynamic Cone P Static Cone Pene Static Cone Pene	r test expre Detector re est over se neter test e rests Penetromet etration tes	essed as uncorr ading in ppm ection noted expressed as in: ter test st	strument readi	ng in kPa	= peak value, sr = residual value)
RANKING OF VISUALL	Y OBSERVABLE				(for specif	fic soil contamination assessment
• • • •	le evidence of cont			R = A		atural odours identified
	vidence of visible co		on	R=B		n-natural odours identified
- 5	contamination			R = C	0	e non-natural odours identified
	ant visible contamin	ation		R = D		on-natural odours identified
ROCK CORE RECOVER				_		
TCR = Total Core Recov	rery (%)	SCR	= Solid Core Re	ecovery (%)		RQD = Rock Quality Designation (%)
$=\frac{\text{Length of core recevered}}{\text{Length of core recevered}}$		Σ Length	ofcylindrical co	re recevered	100 :	$=\frac{\Sigma \text{Axial Lenghts of core} > 100 \text{ mm}}{\text{Length of core mm}} \times 100$
$= \frac{\text{Lengh of core run}}{\text{Lengh of core run}}$	x 100 =	=	Lengh of core r	un X	100	Lengh of core run
MATERIAL BOUNDARI	ES	=	Lengh of core r	un A		Lengh of core run X 100

Environm Investi Contamination	gatior	Australia			N BORE		SOIL DESCE	
	FILL			RGANIC SO L, OH or Pt)	-	 	CLAY (CL, (CI or CH)
		BLES or _DERS	**** **** **** **** ****	LT (ML or M	H)		SAND (SP o	or SW)
20°2°	GRA GW)	VEL (GP or	Combinations sandy clay	of these basic s	ymbols may b	e used to	indicate mixed mater	ials such as
Soil is broad	ly classifie	d and described in	STRATIGRAPHY Borehole and Test F aterial properties are	Pit Logs using th			en in AS1726 – 1993, ethods.	(Amdt1 –
PARTICLE	SIZE CI	HARACTERISTI	CS	USCS SY	MBOLS			
Major Divi	sion	Sub Division	Particle Size	Major D	ivisions	Symbol		
	BOULD	ERS	>200 mm	Е	e e	GW	Well graded grav	
	COBBL	ES	63 to 200 mm	COARSE GRAINED SOILS More than 50% by dry mass less than 63mm is greater than 0.075mm	More than 50% of coarse grains are >2.mm	GP	sand mixtures, lit Poorly graded gra	vel and gravel-
		Coarse	20 to 63 mm	0.0 ר	than 50 se grain >2.mm		sand mixtures, lit Silty gravel, gra	
GRAVE	EL	Medium	6 to 20 mm	dry n thar	arse	GM	mixtu	res.
		Fine	2 to 6 mm	By of the set of the s	Mc CO	GC	Clayey gravel, gr mixtu	res.
		Coarse	0.6 to 2 mm	COARSE GRAINED SOILS for than 50% by dry mass le 63mm is greater than 0.075	0% ains	SW	Well graded san sand, little o	
SAND)	Medium	0.2 to 0.6 mm	ARS than	More than 50% of coarse grains are <2 mm	SP	Poorly graded sa	nd and gravelly
		Fine	0.075 to 0.2mm	ore to	e tha oarse re <2	SM	sand, little o Silty sand, sand	
	SILT		0.002 to 0.075 mn	thar	Mor of cc al	SC	Clayey sand, mixtu	
		STICITY PROPE		S han		ML	Inorganic silts of very fine sands,	low plasticity, rock flour, silty
, percent	30			FINE GRAINED SOILS re than 50% by dry mass st than 63mm is less than 0.075mm	Liquid Limit less < 50%	CL	or clayey fir Inorganic clays of plasticity, gravell clays, silt	low to medium y clays, sandy
¹ 1 x:		CL CI .		RAINED 1 50% by 63mm is 0.075mm	Liq	OL	Organic silts an clays of low	
QNI	20		он	thar han		MH	Inorganic silts of	high plasticity.
STICITY INDEX		OL or ML	MH MH	FINE GRAINED More than 50% by less than 63mm is 0.075mm	Liquid Limit > than 50%	CH OH	Inorganic clays of Organic clays of plastic	medium to high
PLAST	20	30 40 50	60 70			PT	Peat muck and organic	
MOISTURI							organic	00110.
Symbol	Term	Description						
D	Dry	•	Is are free flowing.	Clays & Silts may	y be brittle or	friable and	powdery.	
М	Moist		han in the dry condit			nd gravels	tend to cohere.	
W Moisture co	Wet		water. Sands and gra			r liquid lim	it (WL) [» much great	or than
		than, « much less					it (WE) [» much great	er unan,
CONSISTEN	ICY			DENSITY				
Symbol	Term		Shear Strength	Symbol	Term		Density Index %	SPT "N" #
VS S	Very So Soft		12 kPa 25 kPa	VL	Very Loose	se	< 15 15 to 35	0 to 4 4 to 10
F	Firm		50 kPa	MD	Medium De	nsity	35 to 65	10 to 30
St	Stiff	50 to	100 kPa	D	Dense		65 to 85	30 to 50
VSt H	Very Sti		200 kPa	VD	Very Den	se	Above 85	Above 50
In the absend		esults, consistenc					served behaviour of t n pressure and equip	
MINOR CO								
Term		nent Guide		Proportion by Mass				
Trace	or no diff	erent to general pr	operties of primary of					
Some			by feel or eye but so operties of primary o					

TERMS FOR ROCK MATERIAL STRENGTH AND WEATHERING

CLASSIFICATION AND INFERRED STRATIGRAPHY

Soil is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. Material properties are assessed in the field by visual/ tactile methods.

STRENGTH

Symbol	Term	Point Load Index, Is ₍₅₀₎ (MPa) [#]	Field Guide
EL	Extremely Low	< 0.03	Easily remoulded by hand to a material with soil properties.
VL	Very Low	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30 mm can be broken by finger pressure.
L	Low	0.1 to 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
М	Medium	0.3 to 1	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.
Н	High	1 to 3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken with pick with a single firm blow; rock rings under hammer.
VH	Very High	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
EH	Extremely High	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

[#]Rock Strength Test Results

4

Point Load Strength Index, $Is_{(50)}$, Axial test (MPa)

Point Load Strength Index, Is(50), Diametral test (MPa)

Relationship between rock strength test result ($Is_{(50)}$) and unconfined compressive strength (UCS) will vary with rock type and strength, and should be determined on a site-specific basis. UCS is typically 10 to 30 x $Is_{(50)}$, but can be as low as 5 MPa.

ROCK MATERIAL WEATHERING

Sym	bol	Term	Field Guide				
RS		Residual Soil	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported.				
EW	1	Extremely Weathered	Rock is weathered to such an extent that it has soil properties - i.e. it either disintegrates or can be remoulded, in water.				
DW	HW		Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or				
	MW	Distinctly Weathered	may be decreased due to deposition of weathering products in pores. In some environments it is convenient to subdivide into Highly Weathered and Moderately Weathered, with the degree of alteration typically less for MW.				
SW	1	Slightly Weathered	Rock slightly discoloured but shows little or no change of strength relative to fresh rock.				
FR		Fresh	Rock shows no sign of decomposition or staining.				

ABBREVIATIONS AND DESCRIPTIONS FOR ROCK MATERIAL AND DEFECTS

CLASSIFICATION AND INFERRED STRATIGRAPHY

Rock is broadly classified and described in Borehole Logs using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. Material properties are assessed in the field by visual/ tactile methods.

		ESCRIP										
Layering					Stru							
Term		Descr	iption		Term				Spacing (mn			
Massive		No lav	ering apparent			-	inated		<6			
					-	nated			6 – 20			
Poorly Devel	oped		ng just visible; litt	le effect on			bedded		20 - 60			
,		proper				y bed			60 - 200			
			ng (bedding, folia				edded		200 - 600			
Well Develop	bed		t; rock breaks mo I to layering	bre easily		dy be			600 - 2,000			
		-				UTICKI	y bedded		> 2,000			
				RDEFECTIVE	E9							
Defect Type		Abbr.	Description		<u> </u>							
Joint		JT	or no tensile str acts as cement.	ength. May be c	losed o	r filled	l by air, wate	r or soil	ross which the rock has littl or rock substance, which			
Bedding Par	ting	BP	sub-parallel to la	ayering/ bedding	. Beddi	ng ret	fers to the la	yering o	no tensile strength, parallel r stratification of a rock, ropy in the rock material.			
Foliation		FL	Repetitive plana	ar structure para	llel to th	e she	ar direction	or perpe	endicular to the direction of (SH) and Gneissosity.			
Contact		CO	The surface bet	ween two types	or ages	of ro	ck.					
Cleavage		CL							urfaces resulting from ism, independent of beddin			
Sheared Sea Zone (Fault)		SS/SZ	spaced (often <	50 mm) parallel	and usi	ually s	smooth or sli	ckenside	ock substance cut by close ed joints or cleavage plane			
Crushed Sea Zone (Fault)		CS/CZ	with roughly par	eam or zone composed of disoriented usually angular fragments of the host rock substance, with roughly parallel near-planar boundaries. The brecciated fragments may be of clay, silt, and or gravel sizes or mixtures of these.								
Decompose Seam/ Zone		DS/DZ	Seam of soil substance, often with gradational boundaries, formed by weathering of the rock naterial in places.									
Infilled Sean	1	IS	Seam of soil substance, usually clay or clayey, with very distinct roughly parallel boundarie formed by soil migrating into joint or open cavity.									
Schistocity		SH	of platy or prism	atic mineral gra	ins, suc	h as r	mica.		e to the parallel arrangemen			
Vein		VN	Distinct sheet-lil or crack-seal gr		als crys	stallise	ed within roc	k throug	h typically open-space fillir			
ABBREVIAT	IONS A	ND DES	CRIPTIONS FO	R DEFECT SHA	PE AN	D RO	UGHNESS					
Shape	Abbr.	Descri	ption	Roughness	Abbr.	Des	cription					
Planar	PI	Consis	stent orientation	Polished	Pol	Shin	y smooth su	rface				
Curved	Cu	Gradu orienta	al change in ation	Slickensided	SL	Groo	oved or striat	ed surfa	ace, usually polished			
Undulating	Un	Wavy	surface	Smooth	S	Smo	oth to touch	. Few or	no surface irregularities			
Stepped	St		r more well d steps	Rough	RF				ularities (amplitude genera coarse sandpaper			
Irregular	lr	in orie	sharp changes ntation	Very Rough	VR	>1m	m. Feels like	e very co	ularities, amplitude general barse sandpaper			
Drientation:			cal Boreholes – ned Boreholes –						the core axis.			
ABBREVIATI	ONS A	ND DES	CRIPTIONS FOR	R DEFECT COA	TING		DEFECT A	PERTUR	RE			
Coating	Abbr.	Descrip	otion				Aperture	Abbr.	Description			
Clean			le coating or infill	ing			Closed	CL	Closed.			
Stain SN No visible coating but surfaces are dis staining, often limonite (orange-browr					oured b	y	Open		Without any infill material.			
Veneer	r mineral substa mm); may be pa		ually	Infilled	-	Soil or rock i.e. clay, talc,						

Preliminary Geotechnical Investigation 75 Mary Street, St Peters, NSW Report No. E22317 GA_Rev3, 18 September 2015

APPENDIX B

LABORATORY TEST CERTIFICATES

		S	OIL CHI	EMICAL PR	OPERT	IES R	EPORT	
Client:	Enviro	nmental Inves	tigations		Source:	BH2-3 1.5-	1.95m	
Address:	PO Bo	ox 215 St Peter	rs, NSW, 2044		Sample Description:	silty CLAY		
Project:	75 Ma	ry Street, St Pe	eters (E22317)		Report No.:	S1184-SCI	P	
Job No.:	14-65	5			Lab No.:	14810 (S1 ⁻	184)	
Test Proce	edure:	\	AS1289 4.2.1	Soil Chemical Tests - Determination	of a sulfate content of a	natural soil and the	sulfate content of the groundwater -	Normal Method
		\checkmark	AS1289 4.3.1	Soil Chemical Tests - Determination	of the pH value of a soil	 Electrometric methods 	nod	
		\checkmark	AS 1289 4.4.1	Soil Chemical Tests - Determination	of the electrical resistivity	y of a soil - Method	for sands and granular material	
			RTA T123	pH value of a soil (electrometric met	nod)			
			RTA T185	Resistivity of sands and granular roa	d construction materials			
			RTA T200	Chloride content of roadbase				
		\checkmark	RTA T1010	Quantitative determination of chlorid	es in soil			
			RTA T1011	Quantitative determination of sulpha	es in soil			
			BS1377(1990 pt.)	3) Water soluble sulphate content				
			TAI B117	Sulphides Present			-	
Sampling: Preparatio		Sampled I	by Client				Date Sampled:	24/09/2014
			Su	lphides Present		-		
			Sulph	nate content (ppm)		424.1		
			Sulp	hate content (%)		0.04		
			Chloric	le ion content (ppm)		106.4		
			Chlori	de ion content (%)		0.01		
				рН		5.4		
			Electrica	Conductivity (uS/cm)		-		
			Меа	n Resistivity Ω.m		120		
			(Resisitiv	vity) Density ratio (R _D)		90		
			(Resisitiv	vity) Density index (I _D)		-		
NA	TA	document are trac	eable to Australian/nat	r measurements included in this ional standards. Accredited for sument shall not be reproduced,		Authorised	Signatory:	7/10/2014
	/		ited Laborators			\checkmark		Data
			ited Laboratory N	umper: 148/4				Date: Macquarie Geotechnical
MACO GEO	TEC	RIE						3 Watt Drive BATHURST NSW 2795

				A	S4133 4.1					
Client:	Environmer	ntal Investig	ations		Moisture Content Condition:	As receive	d			
Address:	PO Box 215 St Peters, NSW, 2044			Storage History:	Core Boxes					
Project:	PGI - 75 Mary Street, St Peters NSW (E22317)				Report No:	S1188-PLT				
Job No:	14-655			Date Tested:	7/10/2014					
Test Procedure: AS4133 4.1 Rock strength tests - Determ					ation of point load strength i	ndex	T			
ampling: reparatio	n.	Sampled by Prepared in	Client accordance with the t	est method			Date	Sampled:		23-25/09/2014
ropulatio		r topaloù int								
Sample Number	Borehole ID	Depth (m)	Sample Description	Test Type	Average Width (mm)	Platen Seperation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes
S1188	BH1	3.46-3.57	Siltstone	Diametral	-	52.0	0.01	0.00	0.00	
31100	DIT	J. 4 0*3.J/	Sitstone	Axial	52.0	42.0	0.30	0.11	0.11	
\$1100	DUI4		Ciltotor -	Diametral	-	52.0	0.65	0.24	0.24	
S1189	BH1	6.65-6.75	Siltstone	Axial	52.0	38.0	0.67	0.27	0.27	
				Diametral	-	52.0	0.04	0.01	0.02	
S1190	BH2	5.00-5.15	.5 Siltstone	Axial	52.0	42.0	0.06	0.02	0.02	
S1191 BH2		7.00-7.13	7.13 Siltstone	Diametral	-	47.0	0.31	0.14	0.13	
	BH2			Axial	52.0	33.0	0.14	0.06	0.06	
				Diametral	-	52.0	0.35	0.13	0.13	
S1192	BH2	7.82-7.92	Siltstone	Axial	52.0	44.0	0.72	0.25	0.25	
	2110		30-4.40 Shale	Diametral	-	52.0	0.07	0.03	0.03	
S1193	BH3	3 4.30-4.40		Axial	52.0	45.0	0.31	0.10	0.11	
64404			i.50 Siltstone	Diametral	-	52.0	0.03	0.01	0.01	
S1194	BH3	5.40-5.50		Axial	52.0	48.0	0.04	0.01	0.01	
64405	DUIA	6.12-6.21	21 Siltstone	Diametral	-	52.0	0.19	0.07	0.07	
S1195	BH4			Axial	52.0	39.0	0.36	0.14	0.14	
61105	D.L.	7 0 0 7		Diametral	-	52.0	0.75	0.28	0.28	
S1196	BH4	7.30-7.40	Siltstone	Axial	52.0	40.0	0.40	0.15	0.15	
64407	DUE	F 4F F		Diametral	-	52.0	0.04	0.01	0.02	
S1197	BH5	5.45-5.55	Siltstone	Axial	52.0	46.0	0.04	0.01	0.01	
Comr	docun compl	nent are traceal	ts, calibrations and/or mea ble to Australian/national s IEC 17025. This documen	standards. Accredited for	or	Authorised	Signato	ry:		7/10/2014
V			d Laboratory News	NOR: 14974		Christ	0.14			Data
		_	ed Laboratory Numb	per: 14874 Facility Name: Sydney	David O'	Chris Ll	ογα			Date: Macquarie Geotechni

		Г	POINT LO		S4133 4.1				. •		
Client:	Moisture					d					
Address:	PO Box 21	5 St Peters,	NSW, 2044		Storage History:	CORE BOXES					
Project:	PGI - 75 Mary Street, St Peters NSW (E22317)			Report No:	S1198-PLT						
Job No:	14-655			Date Tested:	7/10/2014						
Test Proce					nation of point load strength i	ndex					
Sampling:		Sampled by					Date	Sampled:		23-25/09/2014	
Preparatio	n:	Prepared in	accordance with the t	est method							
Sample Number	Borehole ID	Depth (m)	Sample Description	Test Type	Average Width (mm)	Platen Seperation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes	
				Diametral	-	52.0	0.11	0.04	0.04		
S1198	BH5	6.89-7.00	Siltstone	Axial	52.0	40.0	0.12	0.05	0.05		
64400		7.02.5.5	cite i	Diametral	-	52.0	0.27	0.10	0.10		
S1199	BH5	7.86-8.00	Siltstone	Axial	52.0	45.0	0.39	0.13	0.13		
				Diametral	-	52.0	0.03	0.01	0.01		
S1200	BH6	5.19-5.29	Siltstone	Axial	52.0	42.0	0.07	0.03	0.03		
S1201	вн6 6	6.08-6.16	Siltstone	Diametral	-	47.0	0.34	0.15	0.15	Failure through defeo	
				Axial	52.0	*	*	*	*	*Unable to perform test of to diametral sample failu	
				Diametral	-	52.0	0.50	0.18	0.19		
S1202	BH6	7.60-7.73	Siltstone	Axial	52.0	38.0	0.58	0.23	0.23		
Comr	nents:										
NAT	docur comp	ment are tracea	sts, calibrations and/or mea ble to Australian/national IEC 17025. This documen	standards. Accredited f	or	Authorised	Signato	ory:		7/10/2014	
V	NA	TA Accredit	ed Laboratory Numb	per: 14874		Chris L	loyd			Date:	
MACO	QUARIE TECH			Facility Name: Sydney Facility Location: 8/10						Macquarie Geotechnica 3 Watt Drive	

	SOIL CLASSIFI	CATION	N REPORT
Client:	Environmental Investigations	Source:	BH1 - 3 - 1.5-1.95m
Address:	PO Box 215 St Peters, NSW, 2044	Sample Description:	silty CLAY
Project:	75 Mary Street, St Peters (E22317)	Report No:	S1182-PI
Job No:	14-655	Lab No:	S1182
Test Proce Sampling: Preparatio	AS1289 3.1.1 Soil classification tests - Determination AS1289 3.1.2 Soil classification tests - Determination AS1289 3.2.1 Soil classification tests - Determination AS1289 3.3.1 Soil classification tests - Calculation o AS1289 3.4.1 Soil classification tests - Determination Sampled by Client	n of the liquid limit of a so n of the liquid limit if a soil n of the plastic limit of a s f the plasticity Index of a s	- One point Casagrande method (subsidiary method) oil - Standard method soil
	Liquid Limit (%): 56 Plastic Limit (%): 19 Fie Plastic Index: 37	Linear Shri	
	Plasticity Chart for Classification	of Fine-graine	ed Soils
NAT	Soil Condition: The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.	Oven Dried	Authorised Signatory: 7/10/2014
	RUARIE Facility Name: Sydney Branch Site Location: 8/10 Bradford St, Alexandria NSV Site No.: 22365	V 2015	Chris Lloyd Date: Facility Macquarie Geotechnical 3 Watt Drive Bathurst NSW 2795

	SOIL CLASSIFI	CATION	N REPORT	
Client:	Environmental Investigations	Source:	BH2 - 2 - 0.5-0.95m	
Address:	PO Box 215 St Peters, NSW, 2044	Sample Description:	silty CLAY	
Project:	75 Mary Street, St Peters (E22317)	Report No:	S1183-PI	
Job No:	14-655	Lab No:	S1183	
Test Proce Sampling:	AS1289 3.1.1 Soil classification tests - Determination AS1289 3.1.2 Soil classification tests - Determination AS1289 3.1.2 Soil classification tests - Determination AS1289 3.2.1 Soil classification tests - Determination AS1289 3.3.1 Soil classification tests - Determination AS1289 3.3.1 Soil classification tests - Determination AS1289 3.3.1 Soil classification tests - Calculation on AS1289 3.4.1 Soil classification tests - Determination	on of the liquid limit of a so on of the liquid limit if a soil on of the plastic limit of a s of the plasticity Index of a s	I - One point Casagrande method (subsidiary method) oil - Standard method soil	24.09.14
Preparatio			Date campioar	2.00000
	Plastic Limit (%): 23 Field Plastic Index: 41 Plastic Index: 41	eld Moisture Co		
	35 Clay 30 25 20 15 15 10 5 0 10 20 30 40	50 iquid Limit %	Silt 60 70	80
NAT	Soil Condition The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025. This document shall	: Oven Dried	Authorised Signatory:	
	not be reproduced, except in full.		·/	7/10/2014
	QUARIE Facility Name: Sydney Branch Site Location: 8/10 Bradford St, Alexandria NSV Site No.: 22365	W 2015	Chris Lloyd Facility	Date: Macquarie Geotechnical 3 Watt Drive Bathurst NSW 2795

	SOIL CLASSIFI	CATION	N REPORT
Client:	Environmental Investigations	Source:	BH3 - 3 - 1.5-1.95m
Address:	PO Box 215 St Peters, NSW, 2044	Sample Description:	silty CLAY
Project:	75 Mary Street, St Peters (E22317)	Report No:	S1185-PI
Job No:	14-655	Lab No:	S1185
Test Proce Sampling:	AS1289 3.1.1 Soil classification tests - Determinatio AS1289 3.1.2 Soil classification tests - Determinatio AS1289 3.2.1 Soil classification tests - Determinatio AS1289 3.3.1 Soil classification tests - Calculation o AS1289 3.4.1 Soil classification tests - Determinatio Sampled by Client	n of the liquid limit of a so n of the liquid limit if a soil n of the plastic limit of a s of the plasticity Index of a s	I - One point Casagrande method (subsidiary method) oil - Standard method soil
Preparatio	n: Prepared in accordance with the test method		
	Liquid Limit (%): 54 Plastic Limit (%): 20 Fie Plastic Index: 34	Linear Shri eld Moisture Co	
	Plasticity Chart for Classification	of Fine-graine	ed Soils
NAT	Soil Condition: The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025. This document shall	: Oven Dried	Authorised Signatory:
$\mathbf{\vee}$	not be reproduced, except in full.		7/10/2014
	NATA Accredited Laboratory Number: 14874 QUARIE Facility Name: Sydney Branch Site Location: 8/10 Bradford St, Alexandria NSV Site No.: 22365	V 2015	Chris Lloyd Date: Facility Macquarie Geotechnical 3 Watt Drive Bathurst NSW 2795

	SOIL CLASSIFI	CATION	N REPORT	
Client:	Environmental Investigations	Source:	BH4 - 2 - 0.5-0.95m	
Address:	PO Box 215 St Peters, NSW, 2044	Sample Description:	silty CLAY	
Project:	75 Mary Street, St Peters (E22317)	Report No:	S1186-PI	
Job No:	14-655	Lab No:	S1186	
Test Proce Sampling:	edure: ✓ AS1289 2.1.1 Soil moisture content tests (Oven dryi AS1289 3.1.1 Soil classification tests - Determination ✓ AS1289 3.1.2 Soil classification tests - Determination ✓ AS1289 3.2.1 Soil classification tests - Determination ✓ AS1289 3.2.1 Soil classification tests - Determination ✓ AS1289 3.3.1 Soil classification tests - Determination ✓ AS1289 3.3.1 Soil classification tests - Determination ✓ AS1289 3.4.1 Soil classification tests - Determination Sampled by Client Soil classification tests - Determination	n of the liquid limit of a so n of the liquid limit if a soil n of the plastic limit of a s t the plasticity Index of a s	- One point Casagrande method (subsidiary method) oil - Standard method soil	24.09.14
Preparatio	n: Prepared in accordance with the test method			
	Plastic Limit (%): 20 Fie Plastic Index: 38 Plasticity Chart for Classification	Id Moisture Control of Fine-graine		
	40 35 Clay 40 30 25 20 15 10 5 0 10 20 30 40 Clay Listend	50 quid Limit %	• • • • • • • • • • • • • •	80
NAT	The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.	Oven Dried	Authorised Signatory:	7/10/2014
	NATA Accredited Laboratory Number: 14874 QUARIE Facility Name: Sydney Branch Site Location: 8/10 Bradford St, Alexandria NSV Site No.: 22365	/ 2015	Chris Lloyd Facility	Date: Macquarie Geotechnical 3 Watt Drive Bathurst NSW 2795

	SOIL CLASSIFI	CATION	N REPORT	
Client:	Environmental Investigations	Source:	BH5 - 4 - 1.5-1.95m	
Address:	PO Box 215 St Peters, NSW, 2044	Sample Description:	silty CLAY	
Project:	75 Mary Street, St Peters (E22317)	Report No:	S1187-PI	
Job No:	14-655	Lab No:	S1187	
Test Proce Sampling:	AS1289 3.1.1 Soil classification tests - Determination AS1289 3.1.2 Soil classification tests - Determination AS1289 3.1.2 Soil classification tests - Determination AS1289 3.2.1 Soil classification tests - Determination AS1289 3.3.1 Soil classification tests - Calculation on AS1289 3.4.1 Soil classification tests - Determination	on of the liquid limit of a so on of the liquid limit if a soil on of the plastic limit of a s of the plasticity Index of a s	- One point Casagrande method (subsidiary method) oil - Standard method soll	24.09.14
Preparatio	Prepared in accordance with the test method			
	Liquid Limit (%): 59 Plastic Limit (%): 21 Fi Plastic Index: 38	Linear Shri eld Moisture Co		
	Plasticity Chart for Classification		ed Soils	80
	The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.	: Oven Dried	Authorised Signatory:	
	not be reproduced, except in full.		7	7/10/2014
	QUARIE Facility Name: Sydney Branch Site Location: 8/10 Bradford St, Alexandria NSN Site No.: 22365	N 2015	Chris Lloyd Facility	Date: Macquarie Geotechnical 3 Watt Drive Bathurst NSW 2795

Preliminary Geotechnical Investigation 75 Mary Street, St Peters, NSW Report No. E22317 GA_Rev3, 18 September 2015

APPENDIX C

IMPORTANT INFORMATION

Important Information

SCOPE OF SERVICES

The geotechnical report ("the report") has been prepared in accordance with the scope of services as set out in the contract, or as otherwise agreed, between the Client and Environmental Investigations ("EI"). The scope of work may have been limited by a range of factors such as time, budget, access and/or site disturbance constraints.

RELIANCE ON DATA

EI has relied on data provided by the Client and other individuals and organizations, to prepare the report. Such data may include surveys, analyses, designs, maps and plans. EI has not verified the accuracy or completeness of the data except as stated in the report. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations ("conclusions") are based in whole or part on the data, EI will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to EI.

GEOTECHNICAL ENGINEERING

Geotechnical engineering is based extensively on judgment and opinion. It is far less exact than other engineering disciplines. Geotechnical engineering reports are prepared for a specific client, for a specific project and to meet specific needs, and may not be adequate for other clients or other purposes (e.g. a report prepared for a consulting civil engineer may not be adequate for a construction contractor). The report should not be used for other than its intended purpose without seeking additional geotechnical advice. Also, unless further geotechnical advice is obtained, the report cannot be used where the nature and/or details of the proposed development are changed.

LIMITATIONS OF SITE INVESTIGATION

The investigation programme undertaken is a professional estimate of the scope of investigation required to provide a general profile of subsurface conditions. The data derived from the site investigation programme and subsequent laboratory testing are extrapolated across the site to form an inferred geological model, and an engineering opinion is rendered about overall subsurface conditions and their likely behaviour with regard to the proposed development. Despite investigation, the actual conditions at the site might differ from those inferred to exist, since no subsurface exploration program, no matter how comprehensive, can reveal all subsurface details and anomalies.

The engineering logs are the subjective interpretation of subsurface conditions at a particular location and time, made by trained personnel. The actual interface between materials may be more gradual or abrupt than a report indicates.

SUBSURFACE CONDITIONS ARE TIME DEPENDENT

Subsurface conditions can be modified by changing natural forces or man-made influences. The report is based on conditions that existed at the time of subsurface exploration. Construction operations adjacent to the site, and natural events such as floods, or ground water fluctuations, may also affect subsurface conditions, and thus the continuing adequacy of a geotechnical report. EI should be kept appraised of any such events, and should be consulted to determine if any additional tests are necessary.

VERIFICATION OF SITE CONDITIONS

Where ground conditions encountered at the site differ significantly from those anticipated in the report, either due to natural variability of subsurface conditions or construction activities, it is a condition of the report that EI be notified of any variations and be provided with an opportunity to review the recommendations of this report. Recognition of change of soil and rock conditions requires experience and it is recommended that a suitably experienced geotechnical engineer be engaged to visit the site with sufficient frequency to detect if conditions have changed significantly.

REPRODUCTION OF REPORTS

This report is the subject of copyright and shall not be reproduced either totally or in part without the express permission of this Company. Where information from the accompanying report is to be included in contract documents or engineering specification for the project, the entire report should be included in order to minimize the likelihood of misinterpretation from logs.

REPORT FOR BENEFIT OF CLIENT

The report has been prepared for the benefit of the Client and no other party. EI assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitation matters arising from any negligent act or omission of EI or for any loss or damage suffered by any other party relying upon the matters dealt with or conclusions expressed in the report). Other parties should not rely upon the report or the accuracy or completeness of any conclusions and should make their own inquiries and obtain independent advice in relation to such matters.

OTHER LIMITATIONS

EI will not be liable to update or revise the report to take into account any events or emergent circumstances or fact occurring or becoming apparent after the date of the report.